Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Disabil Rehabil Assist Technol ; : 1-10, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916055

RESUMO

BACKGROUND: When selecting a manual wheelchair frame, the choice between rigid and folding frames carries significant implications. Traditional folding frames are expected to have more rolling resistance and power dissipation caused by frame deformation, while they are more convenient for transportation, such as in a car. A new hybrid frame, designed to be more rigid, aims to minimize power dissipation while still retaining foldability. AIM: This study aimed to assess rolling resistance, power output, propulsion technique and physiological demands of handrim wheelchair propulsion across three different frames: a rigid frame, a hybrid frame and a conventional folding frame. MATERIALS AND METHODS: Forty-eight able-bodied participants performed coast-down tests using inertial measurement units to determine rolling resistance. Subsequently, four-minute submaximal exercise block under steady-state conditions at 1.11 m/s were performed on a wheelchair ergometer (n = 24) or treadmill (n = 24) to determine power output, propulsion technique and physiological demands. RESULTS: Repeated measures ANOVA revealed that the hybrid frame exhibited the lowest rolling resistance (7.0 ± 1.5N, p ≤ 0.001) and required less power output (8.3 ± 1.0W, p ≤ 0.001) at a given speed, compared to both the folding (9.3 ± 2.2N, 10.8 ± 1.4W) and rigid frame (8.0 ± 1.9N, 9.4 ± 1.6W). Subsequently, this resulted in significantly lower applied forces and push frequency for the hybrid frame. The folding frame had the highest energy expenditure (hybrid: 223 ± 44 W, rigid: 234 ± 51 W, folding: 240 ± 46 W, p ≤ 0.001). CONCLUSION: The hybrid frame demonstrated to be a biomechanically and physiologically beneficial solution compared to the folding frame, exhibiting lower rolling resistance, reduced power output, and consequently minimizing force application and push frequency, all while retaining its folding mechanism.


A hybrid frame, developed as an intermediary solution between a folding and rigid frame, presents reduced biomechanical and physiological demands compared to a folding frame. This is attributed to its decreased need for propulsive forces and energy expenditure, resulting from lower rolling resistanceDespite the hybrid frame offering lower rolling resistance and thus requiring less propulsive force as the rigid frame, it experiences internal power losses due to movement between its interconnected pieces. Consequently, the net mechanical efficiency of the hybrid frame is inferior to that of the rigid frame, resulting in a similar energy expenditure between the hybrid and rigid frames.The hybrid frame emerges as a potentially more advantageous option than a conventional folding frame, as it diminishes biomechanical and physiological strain while retaining a folding mechanism, to ensure easy transportation.

2.
J Shoulder Elbow Surg ; 33(1): 145-155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689102

RESUMO

BACKGROUND: Overloading of the elbow joint prosthesis following total elbow arthroplasty can lead to implant failure. Joint moments during daily activities are not well contextualized for a prosthesis's failure limits, and the effect of the current postoperative instruction on elbow joint loading is unclear. This study investigates the difference in elbow joint moments between simulated daily tasks and between flexion-extension, pronation-supination, and varus-valgus movement directions. Additionally, the effect of the current postoperative instruction on elbow joint load is examined. METHODS: Nine healthy participants (age 45.8 ± 17 years, 3 males) performed 8 tasks; driving a car, opening a door, rising from a chair, lifting, sliding, combing hair, drinking, emptying cup, without and with the instruction "not lifting more than 1 kg." Upper limb kinematics and hand contact forces were measured. Elbow joint angles and net moments were analyzed using inverse dynamic analysis, where the net moments are estimated from movement data and external forces. RESULTS: Peak elbow joint moments differed significantly between tasks (P < .01) and movement directions (P < .01). The most and least demanding tasks were, rising from a chair (13.4 Nm extension, 5.0 Nm supination, and 15.2 Nm valgus) and sliding (4.3 Nm flexion, 1.7 Nm supination, and 2.6 Nm varus). Net moments were significantly reduced after instruction only in the chair task (P < .01). CONCLUSION: This study analyzed elbow joint moments in different directions during daily tasks. The outcomes question whether postoperative instruction can lead to decreasing elbow loads. Future research might focus on reducing elbow loads in the flexion-extension and varus-valgus directions.


Assuntos
Artroplastia de Substituição do Cotovelo , Articulação do Cotovelo , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Articulação do Cotovelo/cirurgia , Cotovelo , Atividades Cotidianas , Movimento , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA