Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(2): e0240021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234500

RESUMO

Lactic acid bacteria (LAB) play a significant role in biotechnology, e.g., food industry and also in human health. Many LAB genera have developed a multidrug resistance in the past few years, causing a serious problem in controlling hospital germs worldwide. Enterococcus faecalis accounts for a large part of the human infections caused by LABs. Therefore, studying its adaptive metabolism under various environmental conditions is particularly important to promote the development of new therapeutic approaches. In this study, we investigated the effect of glutamine auxotrophy (ΔglnA mutant) on metabolic and proteomic adaptations of E. faecalis in response to a changing pH in its environment. Changing pH values are part of the organism's natural environment in the human body and play a role in the food industry. We compared the results with those of the wildtype. Using a genome-scale metabolic model constrained by metabolic and proteomic data, our integrative method allows us to understand the bigger picture of the adaptation strategies of this bacterium. The study showed that energy demand is the decisive factor in adapting to a new environmental pH. The energy demand of the mutant was higher at all conditions. It has been reported that ΔglnA mutants of bacteria are energetically less effective. With the aid of our data and model we are able to explain this phenomenon as a consequence of a failure to regulate glutamine uptake and the costs for the import of glutamine and the export of ammonium. Methodologically, it became apparent that taking into account the nonspecificity of amino acid transporters is important for reproducing metabolic changes with genome-scale models because it affects energy balance. IMPORTANCE The integration of new pH-dependent experimental data on metabolic uptake and release fluxes, as well as of proteome data with a genome-scale computational model of a glutamine synthetase mutant of E. faecalis is used and compared with those of the wildtype to understand why glutamine auxotrophy results in a less efficient metabolism and how-in comparison with the wildtype-the glutamine synthetase knockout impacts metabolic adjustments during acidification or simply exposure to lower pH. We show that forced glutamine auxotrophy causes more energy demand and that this is likely due to a disregulated glutamine uptake. Proteome changes during acidification observed for the mutant resemble those of the wildtype with the exception of glycolysis-related genes, as the mutant is already energetically stressed at a higher pH and the respective proteome changes were in effect.


Assuntos
Enterococcus faecalis , Glutamato-Amônia Ligase , Enterococcus faecalis/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Humanos , Proteoma/metabolismo , Proteoma/farmacologia , Proteômica
2.
Metabolites ; 12(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050165

RESUMO

Genome-scale metabolic models are frequently used in computational biology. They offer an integrative view on the metabolic network of an organism without the need to know kinetic information in detail. However, the huge solution space which comes with the analysis of genome-scale models by using, e.g., Flux Balance Analysis (FBA) poses a problem, since it is hard to thoroughly investigate and often only an arbitrarily selected individual flux distribution is discussed as an outcome of FBA. Here, we introduce a new approach to inspect the solution space and we compare it with other approaches, namely Flux Variability Analysis (FVA) and CoPE-FBA, using several different genome-scale models of lactic acid bacteria. We examine the extent to which different types of experimental data limit the solution space and how the robustness of the system increases as a result. We find that our new approach to inspect the solution space is a good complementary method that offers additional insights into the variance of biological phenotypes and can help to prevent wrong conclusions in the analysis of FBA results.

3.
J Biotechnol ; 327: 54-63, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33309962

RESUMO

In-depth understanding of microbial growth is crucial for the development of new advances in biotechnology and for combating microbial pathogens. Condition-specific proteome expression is central to microbial physiology and growth. A multitude of processes are dependent on the protein expression, thus, whole-cell analysis of microbial metabolism using genome-scale metabolic models is an attractive toolset to investigate the behaviour of microorganisms and their communities. However, genome-scale models that incorporate macromolecular expression are still inhibitory complex: the conceptual and computational complexity of these models severely limits their potential applications. In the need for alternatives, here we revisit some of the previous attempts to create genome-scale models of metabolism and macromolecular expression to develop a novel framework for integrating protein abundance and turnover costs to conventional genome-scale models. We show that such a model of Escherichia coli successfully reproduces experimentally determined adaptations of metabolism in a growth condition-dependent manner. Moreover, the model can be used as means of investigating underutilization of the protein machinery among different growth settings. Notably, we obtained strongly improved predictions of flux distributions, considering the costs of protein translation explicitly. This finding in turn suggests protein translation being the main regulation hub for cellular growth.


Assuntos
Escherichia coli , Modelos Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma , Proteômica
4.
New Phytol ; 222(3): 1392-1404, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681147

RESUMO

Sulfur assimilation is central to the survival of plants and has been studied under different environmental conditions. Multiple studies have been published trying to determine rate-limiting or controlling steps in this pathway. However, the picture remains inconclusive with at least two different enzymes proposed to represent such rate-limiting steps. Here, we used computational modeling to gain an integrative understanding of the distribution of control in the sulfur assimilation pathway of Arabidopsis thaliana. For this purpose, we set up a new ordinary differential equation (ODE)-based, kinetic model of sulfur assimilation encompassing all biochemical reactions directly involved in this process. We fitted the model to published experimental data and produced a model ensemble to deal with parameter uncertainties. The ensemble was validated against additional published experimental data. We used the model ensemble to subsequently analyse the control pattern and robustly identified a set of processes that share the control in this pathway under standard conditions. Interestingly, the pattern of control is dynamic and not static, that is it changes with changing environmental conditions. Therefore, while adenosine-5'-phosphosulfate reductase (APR) and sulfite reductase (SiR) share control under standard laboratory conditions, APR takes over an even more dominant role under sulfur starvation conditions.


Assuntos
Arabidopsis/metabolismo , Meio Ambiente , Enxofre/metabolismo , Cisteína/biossíntese , Citosol/metabolismo , Cinética , Metaboloma , Modelos Biológicos , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Sulfatos/metabolismo
5.
Biophys Chem ; 245: 17-24, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529877

RESUMO

Intracellular calcium oscillations have been widely studied. It is assumed that information is conveyed in the frequency, amplitude and shape of these oscillations. In particular, calcium signalling in mammalian liver cells has repeatedly been reported to display frequency coding so that an increasing amount of stimulus is translated into an increasing frequency of the oscillations. However, recently, we have shown that calcium oscillations in fish liver cells rather exhibit amplitude coding with increasing stimuli being translated into increasing amplitudes. Practical consequences of this difference are unknown so far. Here we investigated advantages and disadvantages of frequency vs. amplitude coding, in particular in environments with substantially changing temperatures (e.g. 10-20 degrees). For this purpose, we use computational modelling and a new approach to generate a calcium model exactly displaying a specific frequency and/or amplitude. We conclude that despite the advantages in flexibility that frequencies might offer for the transmission of information in the cell, amplitude coding is obviously more robust with respect to changes in environmental temperatures. This potentially explains the observed differences between two classes of organisms, one operating at constant temperatures whereas the other is not.


Assuntos
Cálcio/química , Temperatura , Sinalização do Cálcio , Simulação por Computador , Células HEK293 , Humanos
6.
J Biotechnol ; 232: 25-37, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26970054

RESUMO

Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets.


Assuntos
Bactérias/metabolismo , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Aminoácidos/metabolismo , Bactérias/genética , Modelos Genéticos
7.
NPJ Syst Biol Appl ; 2: 16017, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725473

RESUMO

Genome-scale metabolic models represent the entirety of metabolic reactions of an organism based on the annotation of the respective genome. These models commonly allow all reactions to proceed concurrently, disregarding the fact that at no point all proteins will be present in a cell. The metabolic reaction space can be constrained to a more physiological state using experimentally obtained information on enzyme abundances. However, high-quality, genome-wide protein measurements have been challenging and typically transcript abundances have been used as a surrogate for protein measurements. With recent developments in mass spectrometry-based proteomics, exemplified by SWATH-MS, the acquisition of highly quantitative proteome-wide data at reasonable throughput has come within reach. Here we present methodology to integrate such proteome-wide data into genome-scale models. We applied this methodology to study cellular changes in Enterococcus faecalis during adaptation to low pH. Our results indicate reduced proton production in the central metabolism and decreased membrane permeability for protons due to different membrane composition. We conclude that proteomic data constrain genome-scale models to a physiological state and, in return, genome-scale models are useful tools to contextualize proteomic data.

8.
Appl Environ Microbiol ; 81(5): 1622-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527553

RESUMO

Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets.


Assuntos
Aminoácidos/metabolismo , Simulação por Computador , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Redes e Vias Metabólicas/genética , Metabolismo Energético , Enterococcus faecalis/crescimento & desenvolvimento , Análise do Fluxo Metabólico , Modelos Biológicos
9.
PLoS Comput Biol ; 9(7): e1003159, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946717

RESUMO

Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may reflect adaptation to different environments with different concentrations of activating compounds. The combined computational approach employed can readily be applied to other enzymes.


Assuntos
Lactobacillus/metabolismo , Piruvato Quinase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Dados de Sequência Molecular , Piruvato Quinase/química , Homologia de Sequência de Aminoácidos
10.
J Biol Chem ; 288(29): 21295-21306, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23720742

RESUMO

Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.


Assuntos
Bactérias/enzimologia , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Isoenzimas/metabolismo , Cinética , Lactato Desidrogenases/química , Lactato Desidrogenases/isolamento & purificação , Modelos Biológicos , Fosfatos/farmacologia , Cloreto de Sódio/farmacologia , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA