Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 140: 108976, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506856

RESUMO

Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects shrimp hepatopancreas, causing growth retardation and disease susceptibility. Knowledge of the host-pathogen molecular mechanisms is essential to understanding the microsporidian pathogenesis. Turtle-like protein (TLP) is part of the immunoglobulin superfamily of proteins, which is widely distributed in the animal kingdom. TLP has multiple functions, such as cell surface receptors and cell adhesion molecules. The spore wall proteins (SWPs) of microsporidia are involved in the infection mechanisms. Some SWPs are responsible for spore adherence, which is part of the activation and host cell invasion processes. Previous studies showed that TLP from silkworms (Bombyx mori) interacted with SWP26, contributing to the infectivity of Nosema bombycis to its host. In this study, we identified and characterized for the first time, the Litopenaeus vannamei TLP gene (LvTLP), which encodes an 827-aa protein (92.4 kDa) composed of five immunoglobulin domains, two fibronectin type III domains, and a transmembrane region. The LvTLP transcript was expressed in all tested tissues and upregulated in the hepatopancreas at 1 and 7 days post-cohabitation (dpc) and at 9 dpc in hemocytes. To identify the LvTLP binding counterpart, recombinant (r)LvTLP and recombinant (r)EhSWP1 were produced in Escherichia coli. Coimmunoprecipitation and enzyme-linked immunosorbent assays demonstrated that rLvTLP interacted with rEhSWP with high affinity (KD = 1.20 × 10-7 M). In EHP-infected hepatopancreases, LvTLP was clustered and co-localized with some of the developing EHP plasmodia. Furthermore, LvTLP gene silencing reduced the EHP copy numbers compared with those of the control group, suggesting the critical role of LvTLP in EHP infection. These results provide insight into the molecular mechanisms of the host-pathogen interactions during EHP infection.


Assuntos
Enterocytozoon , Penaeidae , Tartarugas , Animais , Enterocytozoon/genética , Interações Hospedeiro-Patógeno , Penaeidae/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36332881

RESUMO

DNA double-strand breaks (DSBs) are repaired through three major pathways: Non-Homologous End-Joining (NHEJ), Microhomology-Mediated End-Joining (MMEJ), and Homology-Directed Repair (HDR), each requiring a specific set of diverse proteins. Such pathways and their proteins have been studied in model organisms, including arthropods; however, DSB repair pathways are scarcely described in Crustacea, a taxon that includes the commercially valuable penaeid shrimps (Crustacea: Decapoda: Penaeidae). In this work, transcriptome and proteome databases of Penaeus vannamei and other Crustacea species were scrutinized for each protein of the NHEJ pathway. The structural and functional attributes of such proteins in penaeids were determined using bioinformatics. Additionally, the expression of the NHEJ-related Ku70, Ku80, DNA-PKcs, DNA ligase 4 (Lig4), and HDR- and MMEJ-related protein transcripts were assessed in P. vannamei gills, midgut gland, hemocytes, and muscle by RT-PCR. DSB repair protein transcripts were found expressed in the four assayed tissues, particularly in the gills and midgut gland. Among DSB repair proteins, all the analyzed transcripts of proteins related to the NHEJ pathway were present in gills. To the best of our knowledge, this is the first report on the expression of DSB repair proteins in Decapoda. Together, proteomic, transcriptomic, and expression data suggest the functionality of NHEJ, HDR, and MMEJ pathways in P. vannamei and other decapods. The information presented here contributes to understanding the response to DSB breaks in shrimps, describing possible outcomes in oxidative stress studies and also in the designing of gene editing strategies, which have not been developed in Penaeidae.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteômica , Animais , Reparo do DNA , DNA/genética , DNA/metabolismo , Crustáceos
3.
PLoS One ; 14(8): e0220993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408485

RESUMO

Acute hepatopancreatic necrosis disease (AHPND), caused by marine bacteria Vibrio Parahaemolyticus, is a huge problem in shrimp farms. The V. parahaemolyticus infecting material is contained in a plasmid which encodes for the lethal toxins PirABVp, whose primary target tissue is the hepatopancreas, causing sloughing of epithelial cells, necrosis, and massive hemocyte infiltration. To get a better understanding of the hepatopancreas response during AHPND, juvenile shrimp Litopenaeus vannamei were infected by immersion with V. parahaemolyticus. We performed transcriptomic mRNA sequencing of infected shrimp hepatopancreas, at 24 hours post-infection, to identify novel differentially expressed genes a total of 174,098 transcripts were examined of which 915 transcripts were found differentially expressed after comparative transcriptomic analysis: 442 up-regulated and 473 down-regulated transcripts. Gene Ontology term enrichment analysis for up-regulated transcripts includes metabolic process, regulation of programmed cell death, carbohydrate metabolic process, and biological adhesion, whereas for down-regulated transcripts include, microtubule-based process, cell activation, and chitin metabolic process. The analysis of protein- protein network between up and down-regulated genes indicates that the first gene interactions are connected to oxidation-processes and sarcomere organization. Additionally, protein-protein networks analysis identified 20-top highly connected hub nodes. Based on their immunological or metabolic function, ten candidate transcripts were selected to measure their mRNA relative expression levels in AHPND infected shrimp hepatopancreas by RT-qPCR. Our results indicate a close connection between the immune and metabolism systems during AHPND infection. Our RNA-Seq and RT-qPCR data provide the possible immunological and physiological scenario as well as the molecular pathways that take place in the shrimp hepatopancreas in response to an infectious disease.


Assuntos
Proteínas de Artrópodes/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatopâncreas , Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Hepatopâncreas/metabolismo , Hepatopâncreas/microbiologia , Necrose , Penaeidae/metabolismo , Penaeidae/microbiologia , Vibrioses/metabolismo , Vibrioses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA