Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(19): 13784-13791, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159272

RESUMO

We present a study on molecular-frame photoelectron angular distributions (MFPADs) of small molecules using circularly polarized synchrotron light. We find that the main forward-scattering peaks of the MFPADs are slightly tilted with respect to the molecular axis. This tilt angle is directly connected to the molecular bond length by a simple, universal formula. We apply the derived formula to several examples of MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in the case of homo-nuclear diatomic molecules such as N2.

2.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342321

RESUMO

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

3.
Phys Rev Lett ; 128(5): 053001, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179929

RESUMO

We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with hν=40 keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, nonrelativistic calculations require the use of highly correlated initial- and final-state wave functions.

4.
Phys Rev Lett ; 129(25): 253201, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608244

RESUMO

We investigate experimentally and theoretically the C and O 1s photoionization of fixed-in-space CO molecules at a photon energy of 905 eV. We find a significant dependence of the photoelectron angular distributions on the direction of propagation of the ionizing radiation. It results from an interplay of nondipole effects, on one hand, and molecular effects, on the other. The nondipole effects lead to an increase of the emission probability in the forward direction along the light propagation, and the photoelectron wave being scattered by the molecular potential gives rise to a strong peak in the direction of the atom neighboring the emitter site. These effects can either conspire or extenuate each other, depending on the photoelectron emission direction and molecular orientation in space.

5.
Phys Rev Lett ; 123(19): 193001, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765203

RESUMO

We investigate K-shell ionization of N_{2} at 40 keV photon energy. Using a cold target recoil ion momentum spectroscopy reaction microscope, we determine the vector momenta of the photoelectron, the Auger electron, and both N^{+} fragments. These fully differential data show that the dissociation process of the N_{2}^{2+} ion is significantly modified not only by the recoil momentum of the photoelectron but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30∶70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion.

6.
Phys Rev Lett ; 123(24): 243201, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922823

RESUMO

We investigate angular emission distributions of the 1s photoelectrons of N_{2} ionized by linearly polarized synchrotron radiation at hν=40 keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at x-ray free electron lasers operating in the few tens of keV regime, where such nondipole and recoil effects will be essential.

7.
Phys Rev Lett ; 121(24): 243002, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608769

RESUMO

We suggest that low-energy electrons, released by resonant decay processes, experience substantial scattering on the electron density of excited electrons, which remain a spectator during the decay. As a result, the angular emission distribution is altered significantly. This effect is expected to be a common feature of low-energy secondary electron emission. In this Letter, we exemplify our idea by examining the spectator resonant interatomic Coulombic decay of Ne dimers. Our theoretical predictions are confirmed by a corresponding coincidence experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA