Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0270697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170255

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor for cellular metabolism and serves as a substrate in enzymatic processes. NAD+ is produced by de novo synthesis or salvage pathways in nearly all bacterial species. Haemophilus influenzae lacks the capacity for de novo synthesis, so it is dependent on import of NAD+ from the external environment or salvage biosynthetic pathways for recycling of NAD+ precursors and breakdown products. However, the actual sources of NAD+ utilized by H. influenzae in the respiratory tract are not well defined. In this study, we found that a variety of bacteria, including species found in the upper airway of humans, released NAD+ that was readily detectable in extracellular culture fluid, and which supported growth of H. influenzae in vitro. By contrast, certain strains of Streptococcus pyogenes (group A streptococcus or GAS) inhibited growth of H. influenzae in vitro by secreting NAD+-glycohydrolase (NADase), which degraded extracellular NAD+. Conversely, GAS strains that lacked enzymatically active NADase released extracellular NAD+, which could support H. influenzae growth. Our results suggest that many bacterial species, including normal flora of the upper airway, release NAD+ into the environment. GAS is distinctive in its ability to both release and degrade NAD+. Thus, colonization of the airway with H. influenzae may be promoted or restricted by co-colonization with GAS in a strain-specific manner that depends, respectively, on release of NAD+ or secretion of active NADase. We suggest that, in addition to its role as a cytotoxin for host cells, NADase may serve a separate function by restricting growth of H. influenzae in the human respiratory tract.


Assuntos
NAD , Streptococcus pyogenes , Citotoxinas/metabolismo , Haemophilus influenzae/metabolismo , Humanos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Streptococcus pyogenes/metabolismo
2.
J Bacteriol ; 204(1): e0036621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694903

RESUMO

The emergence and continued dominance of a Streptococcus pyogenes (group A Streptococcus, GAS) M1T1 clonal group is temporally correlated with acquisition of genomic sequences that confer high level expression of cotoxins streptolysin O (SLO) and NAD+-glycohydrolase (NADase). Experimental infection models have provided evidence that both toxins are important contributors to GAS virulence. SLO is a cholesterol-dependent pore-forming toxin capable of lysing virtually all types of mammalian cells. NADase, which is composed of an N-terminal translocation domain and C-terminal glycohydrolase domain, acts as an intracellular toxin that depletes host cell energy stores. NADase is dependent on SLO for internalization into epithelial cells, but its mechanism of interaction with the cell surface and details of its translocation mechanism remain unclear. In this study we found that NADase can bind oropharyngeal epithelial cells independently of SLO. This interaction is mediated by both domains of the toxin. We determined by NMR the structure of the translocation domain to be a ß-sandwich with a disordered N-terminal region. The folded region of the domain has structural homology to carbohydrate binding modules. We show that excess NADase inhibits SLO-mediated hemolysis and binding to epithelial cells in vitro, suggesting NADase and SLO have shared surface receptors. This effect is abrogated by disruption of a putative carbohydrate binding site on the NADase translocation domain. Our data are consistent with a model whereby interactions of the NADase glycohydrolase domain and translocation domain with SLO and the cell surface increase avidity of NADase binding and facilitate toxin-toxin and toxin-cell surface interactions. IMPORTANCE NADase and streptolysin O (SLO) are secreted toxins important for pathogenesis of group A Streptococcus, the agent of strep throat and severe invasive infections. The two toxins interact in solution and mutually enhance cytotoxic activity. We now find that NADase is capable of binding to the surface of human cells independently of SLO. Structural analysis of the previously uncharacterized translocation domain of NADase suggests that it contains a carbohydrate binding module. The NADase translocation domain and SLO appear to recognize similar glycan structures on the cell surface, which may be one mechanism through which NADase enhances SLO pore-forming activity during infection. Our findings provide new insight into the NADase toxin and its functional interactions with SLO during streptococcal infection.


Assuntos
Queratinócitos/fisiologia , NAD+ Nucleosidase/metabolismo , Orofaringe/citologia , Streptococcus pyogenes/enzimologia , Substituição de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Estreptolisinas/metabolismo
3.
mBio ; 10(4)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311885

RESUMO

The orphan regulator RocA plays a critical role in the colonization and pathogenesis of the obligate human pathogen group A Streptococcus Despite multiple lines of evidence supporting a role for RocA as an auxiliary regulator of the control of virulence two-component regulatory system CsrRS (or CovRS), the mechanism of action of RocA remains unknown. Using a combination of in vitro and in vivo techniques, we now find that RocA interacts with CsrS in the streptococcal membrane via its N-terminal region, which contains seven transmembrane domains. This interaction is essential for RocA-mediated regulation of CsrRS function. Furthermore, we demonstrate that RocA forms homodimers via its cytoplasmic domain. The serotype-specific RocA truncation in M3 isolates alters this homotypic interaction, resulting in protein aggregation and impairment of RocA-mediated regulation. Taken together, our findings provide insight into the molecular requirements for functional interaction of RocA with CsrS to modulate CsrRS-mediated gene regulation.IMPORTANCE Bacterial two-component regulatory systems, comprising a membrane-bound sensor kinase and cytosolic response regulator, are critical in coordinating the bacterial response to changing environmental conditions. More recently, auxiliary regulators which act to modulate the activity of two-component systems, allowing integration of multiple signals and fine-tuning of bacterial responses, have been identified. RocA is a regulatory protein encoded by all serotypes of the important human pathogen group A Streptococcus Although RocA is known to exert its regulatory activity via the streptococcal two-component regulatory system CsrRS, the mechanism by which it functions was unknown. Based on new experimental evidence, we propose a model whereby RocA interacts with CsrS in the streptococcal cell membrane to enhance CsrS autokinase activity and subsequent phosphotransfer to the response regulator CsrR, which mediates transcriptional repression of target genes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/química , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Multimerização Proteica , Proteínas Repressoras/química , Transativadores/química , Virulência/genética
4.
mBio ; 8(5)2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900022

RESUMO

The globally dominant, invasive M1T1 strain of group A Streptococcus (GAS) harbors polymorphisms in the promoter region of an operon that contains the genes encoding streptolysin O (SLO) and NAD+-glycohydrolase (NADase), resulting in high-level expression of these toxins. While both toxins have been shown experimentally to contribute to pathogenesis, many GAS isolates lack detectable NADase activity. DNA sequencing of such strains has revealed that reduced or absent enzymatic activity can be associated with a variety of point mutations in nga, the gene encoding NADase; a commonly observed polymorphism associated with near-complete abrogation of activity is a substitution of aspartic acid for glycine at position 330 (G330D). However, nga has not been observed to contain early termination codons or mutations that would result in a truncated protein, even when the gene product contains missense mutations that abrogate enzymatic activity. It has been suggested that NADase that lacks NAD-glycohydrolase activity retains an as-yet-unidentified inherent cytotoxicity to mammalian cells and thus is still a potent virulence factor. We now show that expression of NADase, either enzymatically active or inactive, augments SLO-mediated toxicity for keratinocytes. In culture supernatants, SLO and NADase are mutually interdependent for protein stability. We demonstrate that the two proteins interact in solution and that both the translocation domain and catalytic domain of NADase are required for maximal binding between the two toxins. We conclude that binding of NADase to SLO stabilizes both toxins, thereby enhancing GAS virulence.IMPORTANCE The global increase in invasive GAS infections in the 1980s was associated with the emergence of an M1T1 clone that harbors a 36-kb pathogenicity island, which codes for increased expression of toxins SLO and NADase. Polymorphisms in NADase that render it catalytically inactive can be detected in clinical isolates, including invasive strains. However, such isolates continue to produce full-length NADase. The rationale for this observation is not completely understood. This study characterizes the binding interaction between NADase and SLO and reports that the expression of each toxin is crucial for maximal expression and stability of the other. By this mechanism, the presence of both toxins increases toxicity to keratinocytes and is predicted to enhance GAS survival in the human host. These observations provide an explanation for conservation of full-length NADase expression even when it lacks enzymatic activity and suggest a critical role for binding of NADase to SLO in GAS pathogenesis.


Assuntos
NAD+ Nucleosidase/genética , NAD+ Nucleosidase/metabolismo , Streptococcus pyogenes/patogenicidade , Estreptolisinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Meios de Cultura/química , Citotoxinas/metabolismo , Humanos , Queratinócitos/microbiologia , Óperon , Mutação Puntual , Ligação Proteica , Estabilidade Proteica , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
PLoS Pathog ; 12(3): e1005468, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938870

RESUMO

A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.


Assuntos
NAD+ Nucleosidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Estreptolisinas/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sobrevivência Celular , Células Epiteliais/microbiologia , Exotoxinas/metabolismo , Humanos , Espaço Intracelular/enzimologia , Espaço Intracelular/microbiologia , Queratinócitos/microbiologia , Lisossomos/microbiologia , NAD+ Nucleosidase/genética , NAD+ Nucleosidase/isolamento & purificação , Transporte Proteico , Proteínas Recombinantes , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/fisiologia , Virulência
6.
J Biol Chem ; 289(52): 36315-24, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378408

RESUMO

Group A Streptococcus (GAS) responds to subinhibitory concentrations of LL-37 by up-regulation of virulence factors through the CsrRS (CovRS) two-component system. The signaling mechanism, however, is unclear. To determine whether LL-37 signaling reflects specific binding to CsrS or rather a nonspecific response to LL-37-mediated membrane damage, we tested LL-37 fragments for CsrRS signaling and for GAS antimicrobial activity. We identified a 10-residue fragment (RI-10) of LL-37 as the minimal peptide that retains the ability to signal increased expression of GAS virulence factors, yet it has no detectable antimicrobial activity against GAS. Substitution of individual key amino acids in RI-10 reduced or abrogated signaling. These data do not support the hypothesis that CsrS detects LL-37-induced damage to the bacterial cell membrane but rather suggest that LL-37 signaling is mediated by a direct interaction with CsrS. To test whether LL-37 binds to CsrS, we used the purified CsrS extracellular domain to pull down LL-37 in vitro, a result that provides further evidence that LL-37 binds to CsrS. The dissociation of CsrS-mediated signaling from membrane damage by LL-37 fragments together with in vitro evidence for a direct LL-37-CsrS binding interaction constitute compelling evidence that signal transduction by LL-37 through CsrS reflects a direct ligand/receptor interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Catelicidinas/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Streptococcus pyogenes/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ligação Proteica , Streptococcus pyogenes/enzimologia , Ativação Transcricional , Regulação para Cima , Fatores de Virulência/biossíntese
7.
Mol Microbiol ; 66(5): 1123-35, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17986189

RESUMO

Enteroaggregative Escherichia coli (EAEC), increasingly recognized as an important cause of infant and travelers' diarrhoea, exhibits an aggregative, stacked-brick pattern of adherence to epithelial cells. Adherence is mediated by aggregative adherence fimbriae (AAFs), which are encoded on the pAA virulence plasmid. We recently described a highly prevalent pAA plasmid-borne gene, aap, which encodes a protein (nicknamed dispersin) that is secreted to the bacterial cell surface. Dispersin-null mutants display a unique hyper-aggregating phenotype, accompanied by collapse of AAF pili onto the bacterial cell surface. To study the mechanism of this effect, we solved the structure of dispersin from EAEC strain 042 using solution NMR, revealing a stable beta-sandwich with a conserved net positive surface charge of +3 to +4 among 23 dispersin alleles. Experimental data suggest that dispersin binds non-covalently to lipopolysaccharide on the surface of the bacterium. We also show that the AAF organelles contribute positive charge to the bacterial surface, suggesting that dispersin's role in fimbrial function is to overcome electrostatic attraction between AAF and the bacterial surface.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
J Biol Chem ; 279(30): 31495-504, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15151995

RESUMO

The autotransporter family of proteins is an important class of Gram-negative secreted virulence factors. Their secretion mechanism comprises entry to the periplasm via the Sec apparatus, followed by formation of an outer membrane beta barrel, which allows the N-terminal passenger domain to pass to the extracellular space. Several groups have identified a region immediately upstream of the beta domain that is important for outer membrane translocation, the so-called linker region. Here we characterize this region in EspP, a prototype of the serine protease autotransporters of enterobacteriaceae. We hypothesized that the folding of this region would be important in the outer membrane translocation process. We tested this hypothesis using a mutagenesis approach in conjunction with a series of nested deletions and found that in the absence of a complete passenger, mutations to the C-terminal helix, but not the upstream linker, significantly decrease secretion efficiency. However, in the presence of the passenger mutations to the amino-terminal region of the linker decrease secretion efficiency. Moreover, amino acids of hydrophobic character play a crucial role in linker function, suggesting the existence of a hydrophobic core or hydrophobic interaction necessary for outer membrane translocation of autotransporter proteins.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Transporte Biológico Ativo , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA