Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadj2802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489359

RESUMO

Development of T cells is controlled by the signal strength of the TCR. The scaffold protein kinase D-interacting substrate of 220 kilodalton (Kidins220) binds to the TCR; however, its role in T cell development was unknown. Here, we show that T cell-specific Kidins220 knockout (T-KO) mice have strongly reduced invariant natural killer T (iNKT) cell numbers and modest decreases in conventional T cells. Enhanced apoptosis due to increased TCR signaling in T-KO iNKT thymocytes of developmental stages 2 and 3 shows that Kidins220 down-regulates TCR signaling at these stages. scRNA-seq indicated that the transcription factor Aiolos is down-regulated in Kidins220-deficient iNKT cells. Analysis of an Aiolos KO demonstrated that Aiolos is a downstream effector of Kidins220 during iNKT cell development. In the periphery, T-KO iNKT cells show reduced TCR signaling upon stimulation with α-galactosylceramide, suggesting that Kidins220 promotes TCR signaling in peripheral iNKT cells. Thus, Kidins220 reduces or promotes signaling dependent on the iNKT cell developmental stage.


Assuntos
Fator de Transcrição Ikaros , Proteínas de Membrana , Células T Matadoras Naturais , Timo , Animais , Camundongos , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Fator de Transcrição Ikaros/metabolismo , Timo/citologia , Timo/metabolismo
2.
Nat Immunol ; 24(12): 2135-2149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932456

RESUMO

Current US Food and Drug Administration-approved chimeric antigen receptor (CAR) T cells harbor the T cell receptor (TCR)-derived ζ chain as an intracellular activation domain in addition to costimulatory domains. The functionality in a CAR format of the other chains of the TCR complex, namely CD3δ, CD3ε and CD3γ, instead of ζ, remains unknown. In the present study, we have systematically engineered new CD3 CARs, each containing only one of the CD3 intracellular domains. We found that CARs containing CD3δ, CD3ε or CD3γ cytoplasmic tails outperformed the conventional ζ CAR T cells in vivo. Transcriptomic and proteomic analysis revealed differences in activation potential, metabolism and stimulation-induced T cell dysfunctionality that mechanistically explain the enhanced anti-tumor performance. Furthermore, dimerization of the CARs improved their overall functionality. Using these CARs as minimalistic and synthetic surrogate TCRs, we have identified the phosphatase SHP-1 as a new interaction partner of CD3δ that binds the CD3δ-ITAM on phosphorylation of its C-terminal tyrosine. SHP-1 attenuates and restrains activation signals and might thus prevent exhaustion and dysfunction. These new insights into T cell activation could promote the rational redesign of synthetic antigen receptors to improve cancer immunotherapy.


Assuntos
Proteômica , Receptores de Antígenos de Linfócitos T , Complexo CD3 , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Membrana Celular/metabolismo , Ativação Linfocitária , Linfócitos T
3.
Cell Mol Life Sci ; 79(10): 513, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097202

RESUMO

The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins  that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.


Assuntos
Linfoma de Burkitt , Neoplasias Colorretais , Receptores de Antígenos Quiméricos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/terapia , Humanos , Lectinas/metabolismo , Polissacarídeos/metabolismo , Linfócitos T
4.
Blood Adv ; 3(21): 3248-3260, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698455

RESUMO

Chimeric antigen receptor (CAR) T cells (CARTs) have shown tremendous potential for the treatment of certain B-cell malignancies, including patients with relapsed/refractory multiple myeloma (MM). Targeting the B-cell maturation antigen (BCMA) has produced the most promising results for CART therapy of MM to date, but not all remissions are sustained. Emergence of BCMA escape variants has been reported under the selective pressure of monospecific anti-BCMA CART treatment. Thus, there is a clinical need for continuous improvement of CART therapies for MM. Here, we show that a novel trimeric APRIL (a proliferation-inducing ligand)-based CAR efficiently targets both BCMA+ and BCMA- MM. Modeled after the natural ligand-receptor pair, APRIL-based CARs allow for bispecific targeting of the MM-associated antigens BCMA and transmembrane activator and CAML interactor (TACI). However, natural ligands as CAR antigen-binding domains may require further engineering to promote optimal binding and multimerization to adequately trigger T-cell activation. We found that using a trimeric rather than a monomeric APRIL format as the antigen-binding domain enhanced binding to BCMA and TACI and CART activity against MM in vitro and in vivo. Dual-specific, trimeric APRIL-based CAR are a promising therapeutic approach for MM with potential for preventing and treating BCMA escape.


Assuntos
Antígenos de Neoplasias , Imunoterapia Adotiva , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Antígenos de Neoplasias/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica/imunologia , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Immunity ; 50(5): 1218-1231.e5, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30952607

RESUMO

Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8+ T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses. Antigen stimulation and inflammation induced SPTLC2 expression, and murine T-cell-specific ablation of Sptlc2 impaired antiviral-T-cell expansion and effector function. Sptlc2 deficiency reduced sphingolipid biosynthetic flux and led to prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress, and CD8+ T cell death. Protective CD8+ T cell responses in HSAN-I patient PBMCs and Sptlc2-deficient mice were restored by supplementing with sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Therefore, SPTLC2 underpins protective immunity by translating extracellular stimuli into intracellular anabolic signals and antagonizes ER stress to promote T cell metabolic fitness.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina C-Palmitoiltransferase/genética , Animais , Proliferação de Células , Células Cultivadas , Citocinas/biossíntese , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Feminino , Humanos , Coriomeningite Linfocítica/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais/imunologia , Esfingolipídeos/biossíntese
6.
Front Immunol ; 7: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870038

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease involving multiple organs. It is currently accepted that several genetic, environmental, and hormonal factors are contributing to its development. Innate immunity may have a great influence in autoimmunity through Toll-like receptors. TLR-7 recognizing single-strand RNA has been involved in SLE. Its activation induces intracellular signal with attraction of MyD88 and NF-kBp65, leading to IFN-α synthesis which correlate with disease activity. OBJECTIVE: To assess the expression of TLR-7, MyD88, and NF-kBp65 in B lymphocytes of Mayan women with SLE. METHODS: One hundred patients with SLE and 100 healthy controls, all of them Mayan women, were included. TLR-7 was analyzed on B and T lymphocytes, and MyD88 and NF-kB only in B lymphocytes. Serum INF-α level was evaluated by ELISA. RESULTS: Significant expression (p < 0.0001) of TLR-7 in B and T lymphocytes and serum IFN-α increased (p = 0.034) was observed in patients. MyD88 and NF-kBp65 were also increased in B lymphocytes of patients. TLR-7 and NF-kBp65 expression correlated, but no correlation with INF-α and disease activity was detected. CONCLUSION: Data support the role of TLR-7 and signal proteins in the pathogenesis of SLE in the Mayan population of Yucatán.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA