Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 76: 103330, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244793

RESUMO

The ability of air pollution to induce acute exacerbation of asthma is well documented. However, the ability of ozone (O3), the most reactive gaseous component of air pollution, to function as a modulator during sensitization is not well established. C57BL/6 J male mice were intranasally sensitized to house dust mite (HDM) (40 µg/kg) for 3 weeks on alternate days in parallel with once-a-week O3 exposure (1 ppm). Mice were euthanized 24 h following the last HDM challenge. Lung lavage, histology, lung function (both forced oscillation and forced expiration-based), immune cell profiling, inflammation (pulmonary and systemic), and immunoglobulin production were assessed. Compared to HDM alone, HDM + O3 leads to a significant increase in peribronchial inflammation (p < 0.01), perivascular inflammation (p < 0.001) and methacholine-provoked large airway hyperreactivity (p < 0.05). Serum total IgG and IgE and HDM-specific IgG1 were 3-5 times greater in HDM + O3 co-exposure compared to PBS and O3-exposed groups. An increase in activated/mature lung total and monocyte-derived dendritic cells (p < 0.05) as well as T-activated, and T memory lymphocyte subset numbers (p < 0.05) were noted in the HDM + O3 group compared to HDM alone group. Concurrent O3 inhalation and HDM sensitization also caused significantly greater (p < 0.05) lung tissue interleukin-17 pathway gene expression and mediator levels in the serum. Redox imbalance was manifested by impaired lung antioxidant defense and increased oxidants. O3 inhalation during allergic sensitization coalesces in generating a significantly worse TH17 asthmatic phenotype.


Assuntos
Asma , Ozônio , Pyroglyphidae , Animais , Ozônio/efeitos adversos , Ozônio/administração & dosagem , Pyroglyphidae/imunologia , Asma/imunologia , Asma/etiologia , Asma/metabolismo , Asma/patologia , Asma/induzido quimicamente , Camundongos , Masculino , Fenótipo , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Exp Physiol ; 109(9): 1420-1425, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39090831

RESUMO

The long-term consequences of electronic cigarette (Ecig) use in humans are not yet known, but it is known that Ecig aerosols contain many toxic compounds of concern. We have recently shown that Ecig exposure impairs middle cerebral artery (MCA) endothelial function and that it takes 3 days for MCA reactivity to return to normal. However, the sources contributing to impairment of the endothelium were not investigated. We hypothesized that the increased levels of oxidative stress markers in the blood are correlated with impaired MCA reactivity. We used electron paramagnetic resonance (EPR) spectroscopy to examine plasma from 4-month-old male Sprague-Dawley rats that were exposed to either air (n = 5) or 1 h Ecig exposure, after which blood samples were collected at varying times after exposure (i.e., 1-4, 24, 48 and 72 h postexposure, n = 4 or 5 in each time group). The EPR analyses were performed using the redox-sensitive hydroxylamine spin probe 1-hydroxy-3-carboxymethyl-2,2,5,5-tetramethyl-pyrrolidine (CMH) to measure the level of reactive oxidant species in the plasma samples. We found that EPR signal intensity from the CM• radical was significantly increased in plasma at 1-4, 24 and 48 h (P < 0.05, respectively) and returned to control (air) levels by 72 h. When evaluating the EPR results with MCA reactivity, we found a significant negative correlation (Pearson's P = 0.0027). These data indicate that impaired cerebrovascular reactivity resulting from vaping is associated with the oxidative stress level (measured by EPR from plasma) and indicate that a single 1 h vaping session can negatively influence vascular health for up to 3 days after vaping. HIGHLIGHTS: What is the central question of this study? Does the time course of oxidative stress triggered by electronic cigarette exposure follow the cerebral vascular dysfunction? What is the main finding and its importance? Electron paramagnetic resonance analysis shows that the oxidative stress induced after a single 1 h exposure to electronic cigarette aerosol takes ≤72 h to return to normal, which mirrors the time course for vascular dysfunction in the middle cerebral artery that we have reported previously.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Artéria Cerebral Média , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ratos , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/metabolismo , Vaping/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Fatores de Tempo
3.
J Appl Physiol (1985) ; 137(3): 690-704, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088647

RESUMO

Endothelial dysfunction is a predictor for cardiovascular disease. Preclinical data suggest longstanding cardiovascular and cerebrovascular dysfunction occurs in offspring with perinatal electronic cigarette (Ecig) exposure. Furthermore, direct use of Ecigs increases reactive oxygen species and impairs cerebrovascular function, but the combined effect of direct use in offspring with a history of perinatal exposure (i.e. double-hit condition) is not known. We tested the hypothesis that offspring with double-hit Ecig exposure will lead to greater cerebrovascular and neurocognitive dysfunction compared with in utero exposure only. Male and female offspring were obtained from time-mated Sprague Dawley female rats exposed to air (n = 5 dams) or Ecig exposed (n = 5 dams) and studied at either 3 or 6 mo after birth. Ecig exposure for double-hit offspring began at 1-mo before the timepoints and lasted 4 wk (5 days/wk with 90-min exposure/day). We found double-hit offspring (Ecig:Ecig = exposure dam:offspring) sustained further blunted middle cerebral artery (MCA) reactivity, increased severity of neuronal damage, and increased interactions of astrocytes and endothelial cells compared with offspring with maternal (Ecig:Air) or direct (Air:Ecig) exposure only. Circulating extracellular vesicles (EVs) were increased, whereas sirtuin 1 (SIRT1) was decreased, in all Ecig-exposed groups compared with controls (Air:Air), with Ecig:Ecig group showing the greatest respective change for each. Electron paramagnetic resonance (EPR) spectroscopy revealed oxidative stress was the highest in the plasma of Ecig:Ecig group (P < 0.05) than the other groups. These data show that a double-hit exposure in adolescent or adult offspring results in a greater decline in cerebrovascular function, biomarkers of neuronal dysfunction, and increased circulation of EVs compared with a single-hit exposure.NEW & NOTEWORTHY These data add to the growing body of literature demonstrating that electronic cigarette (Ecig) use during pregnancy (even without nicotine) is not safe, and primes offspring to have worse cardiovascular health outcomes in early and adult life. A key finding from this work is that a second insult from direct vaping in offspring with prior in utero exposure induces greater vascular dysfunction, increased oxidative stress, and shows evidence of neuronal dysfunction compared with either direct- or maternal-only exposure.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Animais , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Masculino , Artéria Cerebral Média/fisiopatologia , Artéria Cerebral Média/efeitos dos fármacos , Estresse Oxidativo , Vaping/efeitos adversos , Exposição Materna/efeitos adversos
4.
J Orthop Res ; 42(3): 539-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37794704

RESUMO

Prosthetic joint infections (PJI) are associated with orthopaedic morbidity and mortality. Mitochondria, the "cell's powerhouses," are thought to play crucial roles in infection response and in increased risk of sepsis mortality. No current research discusses PJI's effect on mitochondrial function and a lack of understanding of immune-infection interactions potentially hinders patient care. The purpose of this pilot study was to evaluate the impact of simulated PJI on local tissue mitochondrial function. Using an established prosthetic implant-associated in vivo model, tissues were harvested from the surgical limb of a methicillin-sensitive Staphylococcus aureus implant-associated infection group (n = 6) and compared to a noninfected group (n = 6) at postoperative day (POD) 21. Using mitochondrial coupling assays, oxygen consumption rate and extracellular acidification rate were assessed in each group. Electron flow through mitochondrial complexes reflected group activity. Electron Paramagnetic Resonance (EPR) spectrometry measured the oxidizing potential of serum samples from infected versus noninfected groups. On POD21, colony-forming units per gram of tissue showed 5 × 109 in the infected group and 101 in the noninfected group (p < 0.0001). Maximal respiration and oxygen consumption due to adenosine triphosphate synthesis were significantly lower in isolated mitochondria from infected limbs (p = 0.04). Both groups had similar complex I, III, IV, and V activity (p > 0.1). Infected group EPR signal intensity reflecting reactive oxygen species levels was 1.31 ± 0.30 compared to 1.16 ± 0.28 (p = 0.73) in the noninfected group. This study highlights PJI's role in mammalian cell mitochondrial dysfunction and oxidative tissue damage, which can help develop interventions to combat PJI.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Animais , Artrite Infecciosa/etiologia , Mamíferos , Ortopedia , Projetos Piloto , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/etiologia , Estudos Retrospectivos , Infecções Estafilocócicas/etiologia , Staphylococcus aureus
5.
ACS Appl Mater Interfaces ; 15(48): 55570-55586, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058105

RESUMO

Recently, aqueous zinc-ion batteries (ZIBs) have become increasingly attractive as grid-scale energy storage solutions due to their safety, low cost, and environmental friendliness. However, severe dendrite growth, self-corrosion, hydrogen evolution, and irreversible side reactions occurring at Zn anodes often cause poor cyclability of ZIBs. This work develops a synergistic strategy to stabilize the Zn anode by introducing a molybdenum dioxide coating layer on Zn (MoO2@Zn) and Tween 80 as an electrolyte additive. Due to the redox capability and high electrical conductivity of MoO2, the coating layer can not only homogenize the surface electric field but also accommodate the Zn2+ concentration field in the vicinity of the Zn anode, thereby regulating Zn2+ ion distribution and inhibiting side reactions. MoO2 coating can also significantly enhance surface hydrophilicity to improve the wetting of electrolyte on the Zn electrode. Meanwhile, Tween 80, a surfactant additive, acts as a corrosion inhibitor, preventing Zn corrosion and regulating Zn2+ ion migration. Their combination can synergistically work to reduce the desolvation energy of hydrated Zn ions and stabilize the Zn anodes. Therefore, the symmetric cells of MoO2@Zn∥MoO2@Zn with optimal 1 mM Tween 80 additive in 1 M ZnSO4 achieve exceptional cyclability over 6000 h at 1 mA cm-2 and stability (>700 h) even at a high current density (5 mA cm-2). When coupling with the VO2 cathode, the full cell of MoO2@Zn∥VO2 shows a higher capacity retention (82.4%) compared to Zn∥VO2 (57.3%) after 1000 cycles at 5 A g-1. This study suggests a synergistic strategy of combining surface modification and electrolyte engineering to design high-performance ZIBs.

6.
Redox Biol ; 67: 102866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703667

RESUMO

We recently reported a previously unknown salutary role for xanthine oxidoreductase (XOR) in intravascular heme overload whereby hepatocellular export of XOR to the circulation was identified as a seminal step in affording protection. However, the cellular signaling and export mechanisms underpinning this process were not identified. Here, we present novel data showing hepatocytes upregulate XOR expression/protein abundance and actively release it to the extracellular compartment following exposure to hemopexin-bound hemin, hemin or free iron. For example, murine (AML-12 cells) hepatocytes treated with hemin (10 µM) exported XOR to the medium in the absence of cell death or loss of membrane integrity (2.0 ± 1.0 vs 16 ± 9 µU/mL p < 0.0001). The path of exocytosis was found to be noncanonical as pretreatment of the hepatocytes with Vaculin-1, a lysosomal trafficking inhibitor, and not Brefeldin A inhibited XOR release and promoted intracellular XOR accumulation (84 ± 17 vs 24 ± 8 hemin vs 5 ± 3 control µU/mg). Interestingly, free iron (Fe2+ and Fe3+) induced similar upregulation and release of XOR compared to hemin. Conversely, concomitant treatment with hemin and the classic transition metal chelator DTPA (20 µM) or uric acid completely blocked XOR release (p < 0.01). Our previously published time course showed XOR release from hepatocytes likely required transcriptional upregulation. As such, we determined that both Sp1 and NF-kB were acutely activated by hemin treatment (∼2-fold > controls for both, p < 0.05) and that silencing either or TLR4 with siRNA prevented hemin-induced XOR upregulation (p < 0.01). Finally, to confirm direct action of these transcription factors on the Xdh gene, chromatin immunoprecipitation was performed indicating that hemin significantly enriched (∼5-fold) both Sp1 and NF-kB near the transcription start site. In summary, our study identified a previously unknown pathway by which XOR is upregulated via SP1/NF-kB and subsequently exported to the extracellular environment. This is, to our knowledge, the very first study to demonstrate mechanistically that XOR can be specifically targeted for export as the seminal step in a compensatory response to heme/Fe overload.


Assuntos
Hemina , Xantina Desidrogenase , Animais , Camundongos , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Hemina/farmacologia , Ferro , NF-kappa B , Heme , Hepatócitos/metabolismo
7.
Part Fibre Toxicol ; 20(1): 15, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085867

RESUMO

BACKGROUND: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.


Assuntos
Microbiota , Ozônio , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , RNA Mensageiro/metabolismo
8.
Redox Biol ; 62: 102636, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906950

RESUMO

Xanthine oxidase (XO) catalyzes the catabolism of hypoxanthine to xanthine and xanthine to uric acid, generating oxidants as a byproduct. Importantly, XO activity is elevated in numerous hemolytic conditions including sickle cell disease (SCD); however, the role of XO in this context has not been elucidated. Whereas long-standing dogma suggests elevated levels of XO in the vascular compartment contribute to vascular pathology via increased oxidant production, herein, we demonstrate, for the first time, that XO has an unexpected protective role during hemolysis. Using an established hemolysis model, we found that intravascular hemin challenge (40 µmol/kg) resulted in a significant increase in hemolysis and an immense (20-fold) elevation in plasma XO activity in Townes sickle cell phenotype (SS) sickle mice compared to controls. Repeating the hemin challenge model in hepatocyte-specific XO knockout mice transplanted with SS bone marrow confirmed the liver as the source of enhanced circulating XO as these mice demonstrated 100% lethality compared to 40% survival in controls. In addition, studies in murine hepatocytes (AML12) revealed hemin mediates upregulation and release of XO to the medium in a toll like receptor 4 (TLR4)-dependent manner. Furthermore, we demonstrate that XO degrades oxyhemoglobin and releases free hemin and iron in a hydrogen peroxide-dependent manner. Additional biochemical studies revealed purified XO binds free hemin to diminish the potential for deleterious hemin-related redox reactions as well as prevents platelet aggregation. In the aggregate, data herein reveals that intravascular hemin challenge induces XO release by hepatocytes through hemin-TLR4 signaling, resulting in an immense elevation of circulating XO. This increased XO activity in the vascular compartment mediates protection from intravascular hemin crisis by binding and potentially degrading hemin at the apical surface of the endothelium where XO is known to be bound and sequestered by endothelial glycosaminoglycans (GAGs).


Assuntos
Hemólise , Receptor 4 Toll-Like , Xantina Oxidase , Animais , Camundongos , Hemina , Fígado/metabolismo , Camundongos Knockout , Oxidantes , Xantina , Xantina Oxidase/metabolismo , Xantinas
9.
Toxicol Sci ; 191(1): 61-78, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36303316

RESUMO

Air pollution accounts for more than 7 million premature deaths worldwide. Using ultrafine carbon black (CB) and ozone (O3) as a model for an environmental co-exposure scenario, the dose response relationships in acute pulmonary injury and inflammation were determined by generating, characterizing, and comparing stable concentrations of CB aerosols (2.5, 5.0, 10.0 mg/m3), O3 (0.5, 1.0, 2.0 ppm) with mixture CB + O3 (2.5 + 0.5, 5.0 + 1.0, 10.0 + 2.0). C57BL6 male mice were exposed for 3 h by whole body inhalation and acute toxicity determined after 24 h. CB itself did not cause any alteration, however, a dose response in pulmonary injury/inflammation was observed with O3 and CB + O3. This increase in response with mixtures was not dependent on the uptake but was due to enhanced reactivity of the particles. Benchmark dose modeling showed several-fold increase in potency with CB + O3 compared with CB or O3 alone. Principal component analysis provided insight into response relationships between various doses and treatments. There was a significant correlation in lung responses with charge-based size distribution, total/alveolar deposition, oxidant generation, and antioxidant depletion potential. Lung tissue gene/protein response demonstrated distinct patterns that are better predicted by either particle dose/aerosol responses (interleukin-1ß, keratinocyte chemoattractant, transforming growth factor beta) or particle reactivity (thymic stromal lymphopoietin, interleukin-13, interleukin-6). Hierarchical clustering showed a distinct signature with high dose and a similarity in mRNA expression pattern of low and medium doses of CB + O3. In conclusion, we demonstrate that the biological outcomes from CB + O3 co-exposure are significantly greater than individual exposures over a range of aerosol concentrations and aerosol characteristics can predict biological outcome.


Assuntos
Poluentes Atmosféricos , Pneumopatias , Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Lesão Pulmonar/metabolismo , Aerossóis e Gotículas Respiratórios , Pneumopatias/induzido quimicamente , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
10.
Appl Magn Reson ; 54(8): 779-791, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38707765

RESUMO

The viscosity measurements are of clinical significance for evaluation of the potential pathological conditions of biological lubricants such as synovial fluids of joints, and for formulation and characterization of peptide- and protein-based biotherapeutics. Due to inherent potential therapeutic activity, protein drugs have proven to be one of the most efficient therapeutic agents in treatment of several life-threatening disorders, such as diabetes and autoimmune diseases. However, home-use applications for treating chronic inflammatory diseases, such as diabetes and rheumatoid arthritis, necessitate the development of high-concentration insulin and monoclonal antibodies formulations for patient self-administration. High protein concentrations can affect viscosity of the corresponding drug solutions complicating their manufacture and administration. The measurements of the viscosity of new insulin analogs and monoclonal antibodies solutions under development is of practical importance to avoid unwanted highly viscous, and therefore, painful for injection drug formulations. Recently, we have demonstrated capability of the electron paramagnetic resonance (EPR) viscometry using viscosity-sensitive 13C-labeled trityl spin probe (13C1-dFT) to report the viscosity of human blood, and interstitial fluids measured in various organs in mice ex-vivo and in anesthetized mice, in vivo. In the present work, we demonstrate utility of the EPR viscometry using 13C1-dFT to measure microviscosity of commercial insulin samples, antibodies solution, and human synovial fluids using small microliter volume samples (5-50 µL). This viscometry analysis approach provides useful tool to control formulations and administration of new biopharmaceuticals, and for evaluation of the state of synovial fluids of importance for clinical applications.

11.
Redox Biol ; 56: 102465, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116160

RESUMO

BACKGROUND: The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. METHODS: COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. RESULTS: Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. CONCLUSION: Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.


Assuntos
COVID-19 , Antioxidantes/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Humanos , Peróxido de Hidrogênio , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-17/metabolismo , Nitratos , Nitritos , Oxidantes/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ácido Úrico , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
Redox Biol ; 47: 102161, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624601

RESUMO

Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) as a model particle. Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). Colloidal characterization and in vitro dosimetry modeling (particle kinetics, fate and transport modeling) were performed. Lung inflammation was assessed following oropharyngeal aspiration of CB or oxidized CBox particles (20 µg per mouse) in C57BL/6J mice. Toxicity and functional assays were also performed on murine macrophage (RAW 264.7) and endothelial cell lines (C166) with and without pharmacological inhibitors. Oxidant generation was assessed by electron paramagnetic resonance spectroscopy (EPR) and via flow cytometry. Endothelial toxicity was evaluated by quantifying pro-inflammatory mRNA expression, monolayer permeability, and wound closure. XPS and FTIR spectra indicated surface modifications, the appearance of new functionalities, and greater oxidative potential (both acellular and in vitro) of CBox particles. Treatment with CBox demonstrated greater in vivo inflammatory potentials (lavage neutrophil counts, secreted cytokine, and lung tissue mRNA expression) and air-blood barrier disruption (lavage proteins). Oxidant-dependent pro-inflammatory signaling in macrophages led to the production of CXCR3 ligands (CXCL9,10,11). Conditioned medium from CBox-treated macrophages induced significant elevation in endothelial cell pro-inflammatory mRNA expression, enhanced monolayer permeability and impairment of scratch healing in CXCR3 dependent manner. In summary, this study mechanistically demonstrated an increased biological potency of CBox particles and established the role of macrophage-released chemical mediators in endothelial damage.


Assuntos
Nanopartículas , Fuligem , Animais , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas , Fuligem/toxicidade
13.
Redox Biol ; 46: 102092, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418598

RESUMO

Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes.


Assuntos
Poluentes Atmosféricos , Ozônio , Pneumonia , Poluentes Atmosféricos/toxicidade , Alarminas/farmacologia , Animais , Carbono/farmacologia , Exposição por Inalação , Pulmão , Camundongos , Oxidantes/farmacologia , Ozônio/toxicidade , Tamanho da Partícula , Pneumonia/induzido quimicamente
14.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066858

RESUMO

Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1-2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.


Assuntos
Viscosidade Sanguínea , Isótopos de Carbono/química , Líquido Extracelular/química , Marcadores de Spin , Compostos de Tritil/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Viscosidade
15.
J Clin Invest ; 130(10): 5397-5412, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32644975

RESUMO

Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.


Assuntos
Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Interleucina-33/imunologia , Macrófagos/imunologia , Alarminas/imunologia , Aloenxertos , Animais , Criança , Modelos Animais de Doenças , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto/imunologia , Humanos , Interleucina-33/administração & dosagem , Interleucina-33/deficiência , Interleucina-33/genética , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Miocárdio/imunologia , Miocárdio/patologia , Regulação para Cima
16.
Artigo em Inglês | MEDLINE | ID: mdl-32169373

RESUMO

OBJECTIVE: Ex vivo lung perfusion creates a proinflammatory environment leading to deterioration in graft quality that may contribute to post-transplant graft dysfunction. Triptolide has been shown to have a therapeutic potential in various disease states because of its anti-inflammatory properties. On this basis, we investigated the impact of triptolide on graft preservation during ex vivo lung perfusion and associated post-transplant outcomes in a rat transplant model. METHODS: We performed rat normothermic ex vivo lung perfusion with acellular Steen solution containing 100 nM triptolide for 4 hours and compared the data with untreated lungs. Orthotopic single lung transplantation after ex vivo lung perfusion was performed. RESULTS: Physiologic and functional parameters of lung grafts on ex vivo lung perfusion with triptolide were better than those without treatment. Graft glucose consumption was significantly attenuated on ex vivo lung perfusion with triptolide via inhibition of hypoxia signaling resulting in improved mitochondrial function and reduced oxidative stress. Also, intragraft inflammation was markedly lower in triptolide-treated lungs because of inhibition of nuclear factor-κB signaling. Furthermore, post-transplant graft function and inflammatory events were significantly improved in the triptolide group compared with the untreated group. CONCLUSIONS: Treatment of lung grafts with triptolide during ex vivo lung perfusion may serve to enhance graft preservation and improve graft protection resulting in better post-transplant outcomes.

17.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L580-L591, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073901

RESUMO

Primary graft dysfunction (PGD) is directly related to ischemia-reperfusion (I/R) injury and a major obstacle in lung transplantation (LTx). Nitrite (NO2-), which is reduced in vivo to form nitric oxide (NO), has recently emerged as an intrinsic signaling molecule with a prominent role in cytoprotection against I/R injury. Using a murine model, we provide the evidence that nitrite mitigated I/R-induced injury by diminishing infiltration of immune cells in the alveolar space, reducing pulmonary edema, and improving pulmonary function. Ultrastructural studies support severe mitochondrial impairment in the lung undergoing I/R injury, which was significantly protected by nitrite treatment. Nitrite also abrogated the increased pulmonary vascular permeability caused by I/R. In vitro, hypoxia-reoxygenation (H/R) exacerbated cell death in lung epithelial and microvascular endothelial cells. This contributed to mitochondrial dysfunction as characterized by diminished complex I activity and mitochondrial membrane potential but increased mitochondrial reactive oxygen species (mtROS). Pretreatment of cells with nitrite robustly attenuated mtROS production through modulation of complex I activity. These findings illustrate a potential novel mechanism in which nitrite protects the lung against I/R injury by regulating mitochondrial bioenergetics and vascular permeability.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nitritos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Células A549 , Animais , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/metabolismo , Transplante de Pulmão/métodos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Disfunção Primária do Enxerto/tratamento farmacológico , Disfunção Primária do Enxerto/metabolismo , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
18.
Biomaterials ; 177: 98-112, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886387

RESUMO

Tissue damage and the impairment of regenerative processes by excessive reactive oxygen species (ROS) contributes to the pathogenesis of various diseases in soft tissues including diabetes, atherosclerosis, Parkinson's disease and myocardial ischemic/reperfusion injury. In this study, a thermally responsive injectable hydrogel poly(NIPAAm-co-VP-co-MAPLA-co-MATEMPO) (pNVMT, NIPAAm: N-isopropylacrylamide, VP: vinylpyrrolidone, MAPLA: methacrylate-polylactide, MATEMPO: methacrylate-TEMPO, TEMPO: 4-amino-TEMPO or 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl) incorporating recyclable ROS scavenging nitroxide radicals on the polymer backbone was developed to locally control adverse tissue effects from free radical generation. In an in vitro oxidative environment, TEMPO Gel significantly preserved cell viability. In a rat myocardial infarction/reperfusion model, TEMPO Gel diffused through the infarcted myocardium, integrated with the tissue upon gelation, and remained for over one week as visualized by MRI. The TEMPO Gel reduced infarction/reperfusion injury and preserved left ventricle geometry. This thermally responsive hydrogel was demonstrated to have properties desirable for local application to soft tissue beds where oxidative damage by ROS is of concern in pathological mechanisms.


Assuntos
Acrilamidas/química , Antioxidantes/administração & dosagem , Óxidos N-Cíclicos/química , Hidrogéis/química , Metacrilatos/química , Óxidos de Nitrogênio/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/uso terapêutico , Materiais Biocompatíveis/química , Preparações de Ação Retardada/química , Feminino , Injeções , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxidos de Nitrogênio/uso terapêutico , Pirrolidinonas/química , Ratos Endogâmicos Lew , Temperatura
19.
Front Oncol ; 8: 97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682483

RESUMO

Heat-shock factor-1 (HSF-1) is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.

20.
Biochem Biophys Rep ; 5: 96-104, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709389

RESUMO

In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c) is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+ cyt c) in the absence and presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with sulfite, Fe3+ cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3-) was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+ cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+ cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+ cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+ cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which occur to humans born with molybdenum cofactor and sulfite oxidase deficiencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA