Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000294

RESUMO

Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.


Assuntos
Indústria Alimentícia , Ficobiliproteínas , Ficobiliproteínas/química , Indústria Alimentícia/métodos , Corantes de Alimentos/química , Humanos
2.
Food Chem ; 426: 136669, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352716

RESUMO

This study aimed to purify, characterise and stabilise the natural food colourant, R-phycocyanin (R-PC), from the red algae Porphyra spp. (Nori). We purified R-PC from dried Nori flakes with a high purity ratio (A618/A280 ≥ 3.4) in native form (α-helix content 53%). SAXS measurements revealed that R-PC is trimeric ((αß)3) in solution. The thermal denaturation of α-helix revealed one transition (Tm at 52 °C), while the pH stability study showed R-PC is stable in the pH range 4-8. The thermal treatment of R-PC at 60 °C has detrimental and irreversible effects on R-PC colour and antioxidant capacity (22 % of residual capacity). However, immobilisation of R-PC within calcium alginate beads completely preserves R-PC colour and mainly retains its antioxidant ability (78 % of residual capacity). Results give new insights into the stability of R-PC and preservation of its purple colour and bioactivity by encapsulation in calcium alginate beads.


Assuntos
Corantes de Alimentos , Porphyra , Ficocianina/química , Porphyra/química , Antioxidantes , Espalhamento a Baixo Ângulo , Difração de Raios X , Verduras
3.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203400

RESUMO

Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular docking. Among twelve examined ligands, the protein fluorescence quenching revealed that only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105 M-1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer, with the binding sites located at the interface of two (αß)3 trimers. UV/VIS absorption spectroscopy demonstrated the changes in the C-PC absorption spectra in a complex with quercetin and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect the secondary structure content, but they induced changes in the tertiary protein structure in the CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10 increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents for C-PC in the food industry.


Assuntos
Proteína C , Spirulina , Animais , Ubiquinona , Antioxidantes/farmacologia , Ficocianina , Simulação de Acoplamento Molecular , Quercetina , Resveratrol/farmacologia , Aditivos Alimentares , Decapodiformes , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA