Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903213

RESUMO

The use of additively manufactured components specifically utilizing titanium alloys has seen rapid growth particularly in aerospace applications; however, the propensity for retained porosity, high(er) roughness finish, and detrimental tensile surface residual stresses are still a limiting factor curbing its expansion to other sectors such as maritime. The main aim of this investigation is to determine the effect of a duplex treatment, consisting of shot peening (SP) and a coating deposited by physical vapor deposition (PVD), to mitigate these issues and improve the surface characteristics of this material. In this study, the additive manufactured Ti-6Al-4V material was observed to have a tensile and yield strength comparable to its wrought counterpart. It also exhibited good impact performance undergoing mixed mode fracture. It was also observed that the SP and duplex treatments resulted in a 13% and 210% increase in hardness, respectively. Whilst the untreated and SP treated samples exhibited a similar tribocorrosion behavior, the duplex-treated sample exhibited the greatest resistance to corrosion-wear observed by the lack of damage on the surface and the diminished material loss rates. On the other hand, the surface treatments did not improve the corrosion performance of the Ti-6Al-4V substrate.

2.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676399

RESUMO

This research studies the individual and combined effects of mechanical shot peening and the deposition of TiAlCuN coating on additively manufactured 316L stainless steel. Shot peening has been found to induce a 40% increase in surface hardness, while the combined effect of shot peening and the coating produced an approximately three-fold increase in surface hardness when compared to the as-printed coupons. Shot peening reduced the surface roughness of printed metal coupons by 50%, showing that shot peening can also serve to improve the surface finish of as-printed 316L stainless steel components. The peening process was found to induce a compressive residual stress of 589 MPa, with a maximum affected depth of approximately 200 µm. Scratch testing of the printed and coated specimens showed complete delamination failure at a normal load of 14 N, when compared to hybrid treated samples which failed at 10 N. On the other hand, from the corrosion tests, it was found that the hybrid treated samples provided the optimal results as opposed to the other variables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA