Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 14(7): 955-963, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392634

RESUMO

Research on prostheses for repairing abdominal wall defects has progressed through past decades for developing an ideal prosthesis. The study was designed to compare different extracellular matrix (ECM) derived biological prostheses as alternate to conventional synthetic polymeric prostheses for the repair of full thickness abdominal wall defects. Five biological scaffolds derived from bovine diaphragm, bovine aorta, bovine gall bladder, porcine gall bladder, and rabbit skin were prepared and screened for their in vitro biocompatibility. Decellularized ECMs were subjected to various biocompatibility analyses, namely, water absorption potential, matrix degradation analysis, biomechanical testing, and cytocompatibility analysis. Though the rabbit skin displayed maximum biomechanical strength, due to its rapid degradation, it failed to fulfill the criteria of an ideal prosthesis. ECMs derived from bovine diaphragm and aorta were found to be superior than others based upon hydration and matrix degradation analysis, with best scores for bovine diaphragm followed by bovine aorta. The bovine diaphragm and aorta also displayed sufficient biomechanical strength, with diaphragm being the second highest (next to rabbit skin), in biomechanical strength followed by aorta. None of the biological prosthesis revealed any cytotoxicity. Thus, bovine diaphragm and aorta derived ECM fulfill the necessary criteria for their use as biological prosthesis. Because these prostheses are biocompatible, apart from their low cost, ease of availability, and simple preparation, they present a potential alternative to synthetic prosthesis for repair of abdominal wall defects, especially in veterinary patients.


Assuntos
Parede Abdominal/cirurgia , Bioprótese , Matriz Extracelular/química , Matriz Extracelular/transplante , Teste de Materiais , Alicerces Teciduais/química , Animais , Bovinos , Coelhos , Suínos
2.
Scientifica (Cairo) ; 2016: 2638371, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27127678

RESUMO

An acellular cholecyst derived extracellular matrix (b-CEM) of bubaline origin was prepared using anionic biological detergent. Healing potential of b-CEM was compared with commercially available collagen sheet (b-CS) and open wound (C) in full thickness skin wounds in rats. Thirty-six clinically healthy adult Sprague Dawley rats of either sex were randomly divided into three equal groups. Under general anesthesia, a full thickness skin wound (20 × 20 mm(2)) was created on the dorsum of each rat. The defect in group I was kept as open wound and was taken as control. In group II, the defect was repaired with commercially available collagen sheet (b-CS). In group III, the defect was repaired with cholecyst derived extracellular matrix of bovine origin (b-CEM). Planimetry, wound contracture, and immunological and histological observations were carried out to evaluate healing process. Significantly (P < 0.05) increased wound contraction was observed in b-CEM (III) as compared to control (I) and b-CS (II) on day 21. Histologically, improved epithelization, neovascularization, fibroplasia, and best arranged collagen fibers were observed in b-CEM (III) as early as on postimplantation day 21. These findings indicate that b-CEM have potential for biomedical applications for full thickness skin wound repair in rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA