Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 17(12): 4019-30, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525171

RESUMO

PURPOSE: Searching for novel approaches to sensitize glioblastoma for cell death, we investigated the proteasome inhibitor bortezomib. EXPERIMENTAL DESIGN: The effect of bortezomib on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures, and in an in vivo model. RESULTS: Bortezomib and TRAIL synergistically trigger cell death and reduce colony formation of glioblastoma cells (combination index < 0.1). Investigations into the underlying molecular mechanisms reveal that bortezomib and TRAIL act in concert to cause accumulation of tBid, the active cleavage product of Bid. Also, the stability of TRAIL-derived tBid markedly increases on proteasome inhibition. Notably, knockdown of Bid significantly decreases bortezomib- and TRAIL-mediated cell death. By comparison, silencing of Noxa, which is also upregulated by bortezomib, does not confer protection. Coinciding with tBid accumulation, the activation of Bax/Bak and loss of mitochondrial membrane potential are strongly increased in cotreated cells. Overexpression of Bcl-2 significantly reduces mitochondrial perturbations and cell death, underscoring the functional relevance of the mitochondrial pathway. In addition, bortezomib cooperates with TRAIL to reduce colony formation of glioblastoma cells, showing an effect on long-term survival. Of note, bortezomib profoundly enhances TRAIL-triggered cell death in primary cultured glioblastoma cells and in patient-derived glioblastoma stem cells, underlining the clinical relevance. Importantly, bortezomib cooperates with TRAIL to suppress tumor growth in an in vivo glioblastoma model. CONCLUSION: These findings provide compelling evidence that the combination of bortezomib and TRAIL presents a promising novel strategy to trigger cell death in glioblastoma, including glioblastoma stem cells, which warrants further investigation.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Ácidos Borônicos/farmacologia , Glioblastoma/patologia , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirazinas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos/farmacologia , Bortezomib , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Neoplasia ; 11(8): 743-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19649204

RESUMO

Because evasion of apoptosis can cause radioresistance of glioblastoma, there is a need to design rational strategies that counter apoptosis resistance. In the present study, we investigated the potential of targeting the antiapoptotic protein XIAP for the radiosensitization of glioblastoma. Here, we report that small-molecule XIAP inhibitors significantly enhance gamma-irradiation-induced loss of viability and apoptosis and cooperate with gamma-irradiation to suppress clonogenic survival of glioblastoma cells. Analysis of molecular mechanisms reveals that XIAP inhibitors act in concert with gamma-irradiation to cause mitochondrial outer membrane permeabilization, caspase activation, and caspase-dependent apoptosis. Importantly, XIAP inhibitors also sensitize primary cultured glioblastoma cells derived from surgical specimens as well as glioblastoma-initiating stemlike cancer stem cells for gamma-irradiation. In contrast, they do not increase the toxicity of gamma-irradiation on some nonmalignant cells of the central nervous system, including rat neurons or glial cells, pointing to some tumor selectivity. In conclusion, by demonstrating for the first time that small-molecule XIAP inhibitors increase the radiosensitivity of glioblastoma cells while sparing normal cells of the central nervous system, our findings build the rationale for further (pre)clinical development of XIAP inhibitors in combination with gamma-irradiation in glioblastoma.


Assuntos
Apoptose/efeitos dos fármacos , Raios gama/uso terapêutico , Glioblastoma/terapia , Radiossensibilizantes/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Animais , Apoptose/efeitos da radiação , Western Blotting , Caspases/efeitos dos fármacos , Terapia Combinada , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos da radiação , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Tolerância a Radiação , Ratos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA