Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pathogens ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558875

RESUMO

The retrovirus causing caprine arthritis encephalitis (CAE), a slowly progressive inflammatory disease in goats, belongs to the group of small ruminant lentiviruses (SRLVs) which cause lifelong infections that ought to be avoided for animal welfare as well as economic reasons. SRLV accreditation has been in place for forty years in The Netherlands and is based on the screening of small ruminant sera for specific antibodies. This paper evaluates 38 dairy goat herds that lost CAEV accreditation between 2012 and 2022. The characteristics of these herds are discussed, and specific follow-up scenarios, depending on desired goals, are introduced. The herd size of the participating herds varies from approximately 400 to 4600 adult dairy goats. The larger herds tended to be more prone to lose herd accreditation and had more difficulties regaining accreditation. Possible routes of introduction are lined up. The Royal GD's tailor-made approach and advice to support livestock farmers with herds that have lost CAE accreditation are discussed in detail. Specific emphasis is placed on the strategic deployment of various diagnostic tests (such as antibody ELISAs and PCR) in different media, such as (pooled) sera, (bulk)milk and tissue samples. Special attention is paid to the added value of retrospective bulk milk testing or the specific testing of groups based on housing and management, which enables the investigation of the moment of viral introduction and route of transmission into a herd. Furthermore, the prospective implementation of bulk milk and strategic pooled milk sample testing in the Dutch SRLV accreditation programs intensifies surveillance and enables the taking of swift action to prevent further transmission within and between herds. An appeal is made to share experiences to improve programs collectively, and to start research into the underlying mechanisms.

2.
Pathogens ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35745489

RESUMO

In contemporary society and modern livestock farming, a monitoring and surveillance system for animal health has become indispensable. In addition to obligations arising from European regulations regarding monitoring and surveillance of animal diseases, The Netherlands developed a voluntary system for the monitoring and surveillance of small ruminant health. This system aims for (1) early detection of outbreaks of designated animal diseases, (2) early detection of yet unknown disease conditions, and (3) insight into trends and developments. To meet these objectives, a system is in place based on four main surveillance components, namely a consultancy helpdesk, diagnostic services, multiple networks, and an annual data analysis. This paper describes the current system and its ongoing development and gives an impression of nearly twenty years of performance by providing a general overview of key findings and three elaborated examples of notable disease outbreaks. Results indicate that the current system has added value to the detection of various (re)emerging and new diseases. Nevertheless, animal health monitoring and surveillance require a flexible approach that is able to keep pace with changes and developments within the industry. Therefore, monitoring and surveillance systems should be continuously adapted and improved using new techniques and insights.

3.
Pathogens ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959534

RESUMO

Q fever is an almost ubiquitous zoonosis caused by Coxiella burnetii. This organism infects several animal species, as well as humans, and domestic ruminants like cattle, sheep and goats are an important animal reservoir of C. burnetii. In 2007, a sudden rise in notified human Q fever cases occurred in The Netherlands, and by the end of 2009, more than 3500 human Q fever patients had been notified. Dairy sheep and dairy goats were suspected to play a causal role in this human Q fever outbreak, and several measures were taken, aiming at a reduction of C. burnetii shedding by infected small ruminants, in order to reduce environmental contamination and thus human exposure. One of the first measures was compulsory notification of more than five percent abortion within thirty days for dairy sheep and dairy goat farms, starting 12 June 2008. After notification, an official farm inspection took place, and laboratory investigations were performed aiming at ruling out or demonstrating a causal role of C. burnetii. These measures were effective, and the number of human Q fever cases decreased; levels are currently the same as they were prior to 2007. The effect of these measures was monitored using a bulk tank milk (BTM) PCR and an antibody ELISA. The percentage PCR positive dairy herds and flocks decreased over time, and dairy sheep flocks tested PCR positive significantly less often and became PCR negative earlier compared to dairy goat herds. Although there was no difference in the percentage of dairy goat and dairy sheep farms with a C. burnetii abortion outbreak, the total number of shedding dairy sheep was much lower than the number of shedding dairy goats. Combined with the fact that Q fever patients lived mainly in the proximity of infected dairy goat farms and that no Q fever patients could be linked directly to dairy sheep farms, although this may have happened in individual cases, we conclude that dairy sheep did not play a major role in the Dutch Q fever outbreak. BTM monitoring using both a PCR and an ELISA is essential to determine a potential C. burnetii risk, not only for The Netherlands but for other countries with small ruminant dairy industries.

4.
Pathogens ; 10(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578179

RESUMO

Results of laboratory investigations of ovine and caprine cases of abortion in the lambing season 2015-2016 were analyzed, using pathology records of submissions to Royal GD (Deventer, the Netherlands) from January until and including April 2016, in comparison with the results of two accessible alternative techniques for sampling aborted lambs and kids, swabbing the fetal oropharynx and puncture of the fetal lung. Chlamydia abortus was the main cause of abortion in sheep as well as in goats. Other causes of abortion were Campylobacter spp., Listeria spp., Escherichia coli, and Yersinia enterocolitica. Ovine pathological submissions resulted more often in detecting an infectious agent compared to caprine submissions. For the three main bacterial causes of abortion, Campylobacter spp., Listeria spp., and Chlamydia spp., compared to results of the pathological examination, oropharynx mucus, and fetal lung puncture samples showed an observed agreement of 0.87 and 0.89, an expected agreement of 0.579 and 0.584, and a kappa value of 0.691 and 0.737 (95% CI: 0.561-0.82 and 0.614-0.859), respectively. The agreement between the results of the pathological examination and both fetal lung puncture and oropharynx mucus samples was classified as good. In conclusion, although a full step-wise post-mortem examination remains the most proper way of investigating small ruminant abortions, the easily accessible, low-threshold tools for practitioners and farmers as described in this paper not only provide reliable results compared to results of the post-mortem examination but also stimulates farmers and veterinarians to submit fetuses and placentas if necessary. Suggestions for further improvement of both alternatives have been summarized. Both alternatives could also be tailor-made for specific regions with their specific causes of abortion.

5.
Small Rumin Res ; 189: 106123, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32427176

RESUMO

Sheep were domesticated around 9000 BC in the Middle East, and since then milk from sheep gradually became very popular, not only for drinking but also for making cheeses and other dairy products. Nowadays, these dairy products are also important for people with an allergy to cow milk, and these products are an essential part of the local daily diet in regions of the world that are not suitable for cows and goats. Consumption of raw milk and raw milk products has a zoonotic risk, and with regard to sheep, the main pathogens associated with such dairy products are: Brucella melitensis, Campylobacter spp., Listeria spp., Salmonella spp., Shiga-toxin producing Escherichia coli, Staphylococcus aureus, tick borne encephalitis virus, and Toxoplasma gondii. Especially, young children, elderly people, pregnant women and immunocompromised (YOPI) persons, and those suffering from disease should be aware of the risk of consuming raw milk and raw milk products. This latter risk can be reduced by proper flock health management, prevention of contamination during milking, adequate milk processing, transport, and refrigerated storage. Only processes equaling pasteurization sufficiently reduce zoonotic risks from milk and milk products, but proper cooling is essential and recontamination must be prevented. Therefore, strict hygiene practices throughout the production process and supply chain especially for raw milk and raw dairy products, should be applied. Small scale production systems pose a greater risk compared to industrialized production systems because of a less protocolized and controlled production process. This manuscript describes zoonotic risks of pathogens from sheep and their milk borne transmission. Additionally, routes of contamination, possibilities for multiplication, and prevention measures thereof are described. We summarize some major human outbreaks caused by consumption of sheep milk and products made thereof, and finally discuss their implications.

6.
J Infect ; 81(1): 90-97, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330524

RESUMO

BACKGROUND/AIM: From 2007 through 2010, the Netherlands experienced the largest recorded Q fever outbreak to date. People living closer to Coxiella burnetii infected goat farms were at increased risk for acute Q fever. Time spent outdoors near infected farms may have contributed to exposure to C. burnetii. The aim of this study was to retrospectively evaluate whether hours/week spent outdoors, in the vicinity of previously C. burnetii infected goat farms, was associated with presence of antibodies against C. burnetii in residents of a rural area in the Netherlands. METHODS: Between 2014-2015, we collected C. burnetii antibody serology and self-reported data about habitual hours/week spent outdoors near the home from 2494 adults. From a subgroup we collected 941 GPS tracks, enabling analyses of active mobility in the outbreak region. Participants were categorised as exposed if they spent time within specified distances (500m, 1000m, 2000m, or 4000m) of C. burnetii infected goat farms. We evaluated whether time spent near these farms was associated with positive C. burnetii serology using spline analyses and logistic regression. RESULTS: People that spent more hours/week outdoors near infected farms had a significantly increased risk for positive C. burnetii serology (time spent within 2000m of a C. burnetii abortion-wave positive farm, OR 3.6 (1.2-10.6)), compared to people spending less hours/week outdoors. CONCLUSIONS: Outdoor exposure contributed to the risk of becoming C. burnetii serology positive. These associations were stronger if people spent more time near C. burnetii infected farms. Outdoor exposure should, if feasible, be included in outbreak investigations.


Assuntos
Coxiella burnetii , Febre Q , Animais , Feminino , Cabras , Países Baixos/epidemiologia , Gravidez , Febre Q/epidemiologia , Estudos Retrospectivos
7.
Vet Sci ; 6(2)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234509

RESUMO

The aims of our study were to calculate the most appropriate cut-off value for milk samples in a serum-validated Mycobacterium avium subsp. paratuberculosis (MAP) ELISA and to analyze MAP ELISA responses in milk samples from vaccinated and nonvaccinated dairy goats in the Netherlands. Analyzed herds were representative for location and herd size of dairy goat herds in the Netherlands. A significantly higher proportion of the analyzed 49 herds were organic as compared with the total Dutch dairy goat population. First, the MAP ELISA was optimized using 992 paired serum and milk samples. At a cut-off of 25 S/P%, the relative sensitivity (Se) was 58.4% (n = 992, 95% CI: 48.8%-67.6%) and relative specificity (Sp) was 98.5% (n = 992, 95% CI: 97.5%-99.2%), as compared to serum ELISA results. The percentage of positively tested herds was 78.2% (n = 49, 95% CI: 63.4%-88.1%). The percentage of positive milk samples per herd (n = 22) was on average 4.6% (median, min, and max of 4.7%, 0.0%, and 10.7%, respectively). Average age of ELISA-positive (3.2 years) and -negative goats (3.2 years) was not different. Significantly more vaccinated goats tested positive (6.7%) as compared with nonvaccinated goats (1.1%). This study shows that a high number of vaccinated and nonvaccinated commercial dairy goat herds in the Netherlands have MAP-ELISA-positive goats.

8.
Vet Rec ; 184(25): 770, 2019 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31221918

RESUMO

Pseudopregnancy is a frequently diagnosed reproductive disorder in (dairy) goats. This cross-sectional study evaluates the incidence, possible risk factors and therapies for pseudopregnancy on Dutch dairy goat farms. Two questionnaires, one for farmers and one for veterinarians, were designed and included questions about general farm demographics, breeding management, hormonal oestrous induction, treatment, measures for reduction and stress moments in dairy goats in the period June 1, 2016-May 31, 2017. In total, 43 farmers (21.5 per cent response rate) and 27 veterinarians (22.5 per cent response rate) completed the questionnaire. The annual incidence of pseudopregnancy varied between 1 and 54 per cent per farm, with a mean annual incidence of 17 per cent (95 per cent CI 0.14 to 0.21). In this study, we found a significant association between incidence of pseudopregnancy and a higher percentage of goats with an extended lactation (p<0.0001) and between incidence of pseudopregnancy and the number of ultrasound examinations per year (p<0.0001). The recommended therapy in literature consists of two administrations of prostaglandins. This was only correctly applied by 10 per cent of the farms. On 52 per cent of the farms, an overdose was used comparing to the recommended dose in literature.


Assuntos
Doenças das Cabras/epidemiologia , Doenças das Cabras/terapia , Pseudogravidez/veterinária , Animais , Estudos Transversais , Fazendas , Feminino , Cabras , Incidência , Países Baixos/epidemiologia , Pseudogravidez/epidemiologia , Pseudogravidez/terapia , Fatores de Risco
9.
Prev Vet Med ; 124: 45-51, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26791753

RESUMO

Toxoplasma gondii can cause disease in goats, but also has impact on human health through food-borne transmission. Our aims were to determine the seroprevalence of T. gondii infection in indoor-housed Dutch dairy goats and to identify the risk factors related to T. gondii seroprevalence. Fifty-two out of ninety approached farmers with indoor-kept goats (58%) participated by answering a standardized questionnaire and contributing 32 goat blood samples each. Serum samples were tested for T. gondii SAG1 antibodies by ELISA and results showed that the frequency distribution of the log10-transformed OD-values fitted well with a binary mixture of a shifted gamma and a shifted reflected gamma distribution. The overall animal seroprevalence was 13.3% (95% CI: 11.7­14.9%), and at least one seropositive animal was found on 61.5% (95% CI: 48.3­74.7%) of the farms. To evaluate potential risk factors on herd level, three modeling strategies (Poisson, negative binomial and zero-inflated) were compared. The negative binomial model fitted the data best with the number of cats (1­4 cats: IR: 2.6, 95% CI: 1.1­6.5; > = 5 cats:IR: 14.2, 95% CI: 3.9­51.1) and mean animal age (IR: 1.5, 95% CI: 1.1­2.1) related to herd positivity. In conclusion, the ELISA test was 100% sensitive and specific based on binary mixture analysis. T. gondii infection is prevalent in indoor housed Dutch dairy goats but at a lower overall animal level seroprevalence than outdoor farmed goats in other European countries, and cat exposure is an important risk factor.


Assuntos
Doenças das Cabras/epidemiologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/epidemiologia , Animais , Anticorpos Antiprotozoários/sangue , Distribuição Binomial , Indústria de Laticínios , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/sangue , Doenças das Cabras/parasitologia , Cabras , Abrigo para Animais , Países Baixos/epidemiologia , Distribuição de Poisson , Prevalência , Análise de Regressão , Fatores de Risco , Estudos Soroepidemiológicos , Toxoplasmose Animal/sangue , Toxoplasmose Animal/parasitologia
10.
BMC Infect Dis ; 15: 372, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26336097

RESUMO

BACKGROUND: In spring 2008, a goat farm experiencing Q fever abortions ("Farm A") was identified as the probable source of a human Q fever outbreak in a Dutch town. In 2009, a larger outbreak with 347 cases occurred in the town, despite no clinical Q fever being reported from any local farm. METHODS: Our study aimed to identify the source of the 2009 outbreak by applying a combination of interdisciplinary methods, using data from several sources and sectors, to investigate seventeen farms in the area: namely, descriptive epidemiology of notified cases; collation of veterinary data regarding the seventeen farms; spatial attack rate and relative risk analyses; and GIS mapping of farms and smooth incidence of cases. We conducted further spatio-temporal analyses that integrated temporal data regarding date of onset with spatial data from an atmospheric dispersion model with the most highly suspected source at the centre. RESULTS: Our analyses indicated that Farm A was again the most likely source of infection, with persons living within 1 km of the farm at a 46 times larger risk of being a case compared to those living within 5-10 km. The spatio-temporal analyses demonstrated that about 60 - 65 % of the cases could be explained by aerosol transmission from Farm A assuming emission from week 9; these explained cases lived significantly closer to the farm than the unexplained cases (p = 0.004). A visit to Farm A revealed that there had been no particular changes in management during the spring/summer of 2009, nor any animal health problems around the time of parturition or at any other time during the year. CONCLUSIONS: We conclude that the probable source of the 2009 outbreak was the same farm implicated in 2008, despite animal health indicators being absent. Veterinary and public health professionals should consider farms with past as well as current history of Q fever as potential sources of human outbreaks.


Assuntos
Aborto Animal/epidemiologia , Cidades , Surtos de Doenças , Doenças das Cabras/epidemiologia , Febre Q/veterinária , Aborto Animal/microbiologia , Agricultura , Criação de Animais Domésticos , Animais , Coxiella burnetii , Feminino , Doenças das Cabras/microbiologia , Cabras/microbiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Gravidez , Saúde Pública , Febre Q/epidemiologia , Análise Espaço-Temporal
11.
PLoS One ; 10(3): e0121355, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816149

RESUMO

In 2007, Q fever started to become a major public health problem in the Netherlands, with small ruminants as most probable source. In order to reduce environmental contamination, control measures for manure were implemented because of the assumption that manure was highly contaminated with Coxiella burnetii. The aims of this study were 1) to clarify the role of C. burnetii contaminated manure from dairy goat farms in the transmission of C. burnetii to humans, 2) to assess the impact of manure storage on temperature profiles in dunghills, and 3) to calculate the decimal reduction time of the Nine Mile RSA 493 reference strain of C. burnetii under experimental conditions in different matrices. For these purposes, records on distribution of manure from case and control herds were mapped and a potential relation to incidences of human Q fever was investigated. Additionally, temperatures in two dunghills were measured and related to heat resistance of C. burnetii. Results of negative binomial regression showed no significant association between the incidence of human Q fever cases and the source of manure. Temperature measurements in the core and shell of dunghills on two farms were above 40°C for at least ten consecutive days which would result in a strong reduction of C. burnetii over time. Our findings indicate that there is no relationship between incidence of human Q fever and land applied manure from dairy goat farms with an abortion wave caused by C. burnetii. Temperature measurements in dunghills on two farms with C. burnetii shedding dairy goat herds further support the very limited role of goat manure as a transmission route during the Dutch human Q fever outbreak. It is very likely that the composting process within a dunghill will result in a clear reduction in the number of viable C. burnetii.


Assuntos
Coxiella burnetii/genética , Cabras/microbiologia , Esterco/microbiologia , Febre Q/epidemiologia , Febre Q/transmissão , Zoonoses/epidemiologia , Animais , Coxiella burnetii/crescimento & desenvolvimento , DNA Bacteriano/análise , Surtos de Doenças , Humanos , Países Baixos/epidemiologia , Febre Q/microbiologia , Análise de Regressão , Solo/química , Temperatura
12.
PLoS One ; 9(8): e105052, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115998

RESUMO

The aim of this study was to estimate the quantity of antibiotics and classes of antibiotics used in the small ruminant industry in the Netherlands in 2011 and 2012. Twelve large veterinary practices, located throughout the Netherlands were selected for this study. All small ruminant farms associated with these practices that had complete records on the quantity of antibiotics prescribed were included. The veterinary practices provided data on all antibiotics prescribed, and the estimated animal used daily dose of antibiotics per year (AUDD/Y) was calculated for each farm. The median AUDD/Y in small ruminant farms was zero in both years (mean 0.60 in 2011, and 0.62 in 2012). The largest quantity of antibiotic use was observed in the professional goat industry (herds of ≥32 goats) with a median AUDD/Y of 1.22 in 2011 and 0.73 in 2012. In the professional sheep industry (flocks of ≥32 sheep), the median AUDD/Y was 0 in 2011 and 0.10 in 2012. In the small scale industry (flocks or herds of <32 sheep or goats), the median AUDD/Y never exceeded 0. The most frequently prescribed antibiotics in the small scale industry and professional sheep farms belonged to the penicillin class. In professional goat farms, antibiotics of the aminoglycoside class were most frequently prescribed. This study provides the first assessment on the quantity of antibiotic use in the small ruminant industry. Given a comparable attitude towards antibiotic use, these results might be valid for small ruminant populations in other north-western European countries as well. The antibiotic use in the small ruminant industry appeared to be low, and is expected to play a minor role in the development of antibiotic resistance. Nevertheless, several major zoonotic bacterial pathogens are associated with the small ruminant industry, and it remains important that antibiotics are used in a prudent way.


Assuntos
Antibacterianos/uso terapêutico , Ruminantes , Drogas Veterinárias/uso terapêutico , Medicina Veterinária/métodos , Criação de Animais Domésticos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/classificação , Resistência Microbiana a Medicamentos , Cabras , Países Baixos , Carneiro Doméstico , Drogas Veterinárias/administração & dosagem , Drogas Veterinárias/classificação
13.
PLoS One ; 9(6): e100135, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24937443

RESUMO

In Northwestern Europe, an epizootic outbreak of congenital malformations in newborn lambs due to infection with Schmallenberg virus (SBV) started at the end of 2011. The objectives of this study were to describe clinical symptoms of SBV infection, the effect of infection on mortality rates, and reproductive performance in sheep, as well as to identify and quantify flock level risk factors for SBV infections resulting in malformations in newborn lambs. A case-control study design was used, with 93 case flocks that had notified malformed lambs and 84 control flocks with no such lambs. Overall animal seroprevalence in case flocks was estimated at 82.0% (95% CI: 74.3-87.8), and was not significantly different from the prevalence in control flocks being 76.4% (95% CI: 67.2-83.6). The percentages of stillborn lambs or lambs that died before weaning, repeat breeders, and lambs with abnormal suckling behaviour were significantly higher in case flocks compared to control flocks. However, effect of SBV infection on mortality rates and reproductive performance seemed to be limited. Multivariable analysis showed that sheep flocks with an early start of the mating season, i.e. before August 2011 (OR = 33.1; 95% CI: 10.0-109.8) and in August 2011 (OR = 8.2; 95% CI: 2.7-24.6) had increased odds of malformations in newborn lambs caused by SBV compared to sheep flocks with a start of the mating season in October 2011. Other flock-level risk factors for malformations in newborn lambs were purchase of silage (OR 5.0; 95% CI: 1.7-15.0) and flocks with one or more dogs (OR = 3.3; 95% CI: 1.3-8.3). Delaying mating until October could be a potential preventive measure for naïve animals to reduce SBV induced losses. As duration of immunity after infection with SBV is expected to last for several years, future SBV induced congenital malformations are mainly expected in offspring of early mated seronegative animals.


Assuntos
Infecções por Bunyaviridae/veterinária , Anormalidades Congênitas/epidemiologia , Fertilidade , Orthobunyavirus/isolamento & purificação , Reprodução , Doenças dos Ovinos/mortalidade , Animais , Infecções por Bunyaviridae/mortalidade , Infecções por Bunyaviridae/virologia , Cães , Incidência , Países Baixos/epidemiologia , Fatores de Risco , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia , Taxa de Sobrevida
14.
Vet J ; 200(2): 343-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24685100

RESUMO

A major human Q fever epidemic occurred in The Netherlands during 2007-2009. In response, all pregnant goats from infected herds were culled before the 2010 kidding season without individual testing. The aim of this study was to assess whether high risk animals from recently infected naive herds can be identified by diagnostic testing. Samples of uterine fluid, milk and vaginal mucus from 203 euthanized pregnant goats were tested by PCR or ELISA. The results suggest that testing followed by culling of only the high risk animals is not a feasible method for protecting public health, mainly due to the low specificity of the tests and variability between herds. The risk of massive bacterial shedding during abortion or parturition can only be prevented by removal of all pregnant animals from naive recently infected herds.


Assuntos
Coxiella burnetii/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/diagnóstico , Reação em Cadeia da Polimerase/veterinária , Febre Q/veterinária , Animais , Anticorpos Antibacterianos/metabolismo , Área Sob a Curva , Derrame de Bactérias , Feminino , Doenças das Cabras/microbiologia , Cabras , Leite/microbiologia , Muco/microbiologia , Gravidez , Febre Q/diagnóstico , Febre Q/microbiologia , Curva ROC , Sensibilidade e Especificidade , Útero/metabolismo , Vagina/metabolismo , Vagina/microbiologia
16.
PLoS One ; 8(1): e54021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342063

RESUMO

Since 2007, Q fever has become a major public health problem in the Netherlands and goats were the most likely source of the human outbreaks in 2007, 2008 and 2009. Little was known about the consequences of these outbreaks for those professional care providers directly involved. The aim of this survey was to estimate the seroprevalence of antibodies against C. burnetii among Dutch livestock veterinarians and to determine possible risk factors. Single blood samples from 189 veterinarians, including veterinary students in their final year, were collected at a veterinary conference and a questionnaire was filled in by each participant. The blood samples were screened for IgG antibodies against phase I and phase II antigen of C. burnetii using an indirect immunofluorescent assay, and for IgM antibodies using an ELISA. Antibodies against C. burnetii were detected in 123 (65.1%) out of 189 veterinarians. Independent risk factors associated with seropositivity were number of hours with animal contact per week, number of years graduated as veterinarian, rural or sub urban living area, being a practicing veterinarian, and occupational contact with swine. Livestock veterinarians should be aware of this risk to acquire an infection with C. burnetii. Physicians should consider potential infection with C. burnetii when treating occupational risk groups, bearing in mind that the burden of disease among veterinarians remains uncertain. Vaccination of occupational risk groups should be debated.


Assuntos
Anticorpos Antibacterianos/sangue , Coxiella burnetii/imunologia , Gado/microbiologia , Médicos Veterinários/estatística & dados numéricos , Adulto , Idoso , Animais , Anticorpos Antibacterianos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Países Baixos , Exposição Ocupacional/análise , Febre Q/prevenção & controle , Fatores de Risco , Estudos Soroepidemiológicos
17.
Geospat Health ; 7(1): 127-34, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23242690

RESUMO

From 2007 through 2009, The Netherlands faced large outbreaks of human Q fever. Control measures focused primarily on dairy goat farms because these were implicated as the main source of infection for the surrounding population. However, in other countries, outbreaks have mainly been associated with non-dairy sheep and The Netherlands has many more sheep than goats. Therefore, a public discussion arose about the possible role of non-dairy (meat) sheep in the outbreaks. To inform decision makers about the relative importance of different infection sources, we developed accurate and high-resolution incidence maps for detection of Q fever hot spots. In the high incidence area in the south of the country, full postal codes of notified Q fever patients with onset of illness in 2009, were georeferenced. Q fever cases (n = 1,740) were treated as a spatial point process. A 500 x 500 m grid was imposed over the area of interest. The number of cases and the population number were counted in each cell. The number of cases was modelled as an inhomogeneous Poisson process where the underlying incidence was estimated by 2-dimensional P-spline smoothing. Modelling of numbers of Q fever cases based on residential addresses and population size produced smooth incidence maps that clearly showed Q fever hotspots around infected dairy goat farms. No such increased incidence was noted around infected meat sheep farms. We conclude that smooth incidence maps of human notifications give valuable information about the Q fever epidemic and are a promising method to provide decision support for the control of other infectious diseases with an environmental source.


Assuntos
Indústria de Laticínios/estatística & dados numéricos , Surtos de Doenças/veterinária , Febre Q/epidemiologia , Zoonoses/epidemiologia , Aborto Animal/epidemiologia , Aborto Animal/etiologia , Aborto Animal/microbiologia , Agricultura/estatística & dados numéricos , Animais , Análise por Conglomerados , Coxiella burnetii/patogenicidade , Surtos de Doenças/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Feminino , Mapeamento Geográfico , Cabras/microbiologia , Humanos , Incidência , Países Baixos/epidemiologia , Distribuição de Poisson , Gravidez , Modelos de Riscos Proporcionais , Febre Q/transmissão , Febre Q/veterinária , Ovinos/microbiologia , Zoonoses/etiologia , Zoonoses/microbiologia
18.
Emerg Infect Dis ; 18(11): 1746-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23092696

RESUMO

The emergence of Schmallenberg virus (SBV), a novel orthobunyavirus, in ruminants in Europe triggered a joint veterinary and public health response to address the possible consequences to human health. Use of a risk profiling algorithm enabled the conclusion that the risk for zoonotic transmission of SBV could not be excluded completely. Self-reported health problems were monitored, and a serologic study was initiated among persons living and/or working on SBV-affected farms. In the study set-up, we addressed the vector and direct transmission routes for putative zoonotic transfer. In total, 69 sheep farms, 4 goat farms, and 50 cattle farms were included. No evidence for SBV-neutralizing antibodies was found in serum of 301 participants. The lack of evidence for zoonotic transmission from either syndromic illness monitoring or serologic testing of presumably highly exposed persons suggests that the public health risk for SBV, given the current situation, is absent or extremely low.


Assuntos
Infecções por Bunyaviridae/transmissão , Doenças Transmissíveis Emergentes/transmissão , Orthobunyavirus/isolamento & purificação , Zoonoses/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Doenças Transmissíveis Emergentes/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Orthobunyavirus/classificação , Vigilância da População , Risco , Ruminantes , Estudos Soroepidemiológicos , Adulto Jovem , Zoonoses/epidemiologia
19.
PLoS One ; 7(7): e42364, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848762

RESUMO

Community Q fever epidemics occurred in The Netherlands in 2007-2009, with dairy goat and dairy sheep farms as the implicated source. The aim of the study was to determine the seroprevalence and risk factors for seropositivity in dairy goat farmers and their household members living or working on these farms. Sera of 268 people living or working on 111 dairy goat farms were tested for Coxiella burnetii IgG and IgM antibodies using immunofluorescence assay. Seroprevalences in farmers, spouses and children (12-17 years) were 73.5%, 66.7%, and 57.1%, respectively. Risk factors for seropositivity were: performing three or more daily goat-related tasks, farm location in the two southern provinces of the country, proximity to bulk milk-positive farms, distance from the nearest stable to residence of 10 meters or less, presence of cats and multiple goat breeds in the stable, covering stable air spaces and staff not wearing farm boots. Goat farmers have a high risk to acquire this occupational infection. Clinicians should consider Q fever in this population presenting with compatible symptoms to allow timely diagnosis and treatment to prevent severe sequelae. Based on the risk factors identified, strengthening general biosecurity measures is recommended such as consistently wearing boots and protective clothing by farm staff to avoid indirect transmission and avoiding access of companion animals in the goat stable. Furthermore, it provides an evidence base for continuation of the current vaccination policy for small ruminants, preventing spread from contaminated farms to other farms in the vicinity. Finally, vaccination of seronegative farmers and household members could be considered.


Assuntos
Indústria de Laticínios , Cabras , Habitação , Febre Q/epidemiologia , Adulto , Animais , Gatos , Bovinos , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Países Baixos/epidemiologia , Fatores de Risco , Estudos Soroepidemiológicos
20.
FEMS Immunol Med Microbiol ; 64(1): 3-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22066649

RESUMO

We describe the Q fever epidemic in the Netherlands with emphasis on the epidemiological characteristics of acute Q fever patients and the association with veterinary factors. Data from 3264 notifications for acute Q fever in the period from 2007 through 2009 were analysed. The patients most affected were men, smokers and persons aged 40­60 years. Pneumonia was the most common clinical presentation (62% in 2007 and 2008). Only 3.2% of the patients were working in the agriculture sector and 0.5% in the meat-processing industry including abattoirs. Dairy goat farms with Coxiella burnetii-induced abortion waves were mainly located in the same area where human cases occurred. Airborne transmission of contaminated dust particles from commercial dairy goat farms in densely populated areas has probably caused this epidemic. In 2010, there was a sharp decline in the number of notified cases following the implementation of control measures on dairy goat and sheep farms such as vaccination, hygiene measures and culling of pregnant animals on infected farms. In combination with a rise in the human population with antibodies against C. burnetii, these have most likely ended the outbreak. Development of chronic Q fever in infected patients remains an important problem for years to come.


Assuntos
Criação de Animais Domésticos , Coxiella burnetii/isolamento & purificação , Surtos de Doenças , Febre Q/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Feminino , Cabras , Humanos , Lactente , Controle de Infecções/métodos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/transmissão , Febre Q/microbiologia , Febre Q/transmissão , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA