Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 281(2): 170-182, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930573

RESUMO

The locomotor muscle morphology of diving mammals yields insights into how they utilize their environment and partition resources. This study examined a primary locomotor muscle, the longissimus, in three closely related, similarly sized pelagic delphinids (n = 7-9 adults of each species) that exhibit different habitat and depth preferences. The Atlantic spotted dolphin (Stenella frontalis) is a relatively shallow diver, inhabiting continental shelf waters; the striped (Stenella coeruleoalba) and short-beaked common (Delphinus delphis) dolphins are sympatric, deep-water species that dive to different depths. Based upon comparative data from other divers, it was hypothesized that the locomotor muscle of the deepest-diving S. coeruleoalba would exhibit a higher percentage of slow oxidative fibers, larger fiber diameters, a higher myoglobin concentration [Mb], and a lower mitochondrial density than that of the shallow-diving S. frontalis, and that the muscle of D. delphis would display intermediate values for these features. As expected, the locomotor muscle of S. coeruleoalba exhibited a significantly higher proportion of slow (57.3 ± 3.9%), oxidative (51.7 ± 2.5%) fibers and higher [Mb] (8.2 ± 0.7 g/100 g muscle) than that of S. frontalis (41.3 ± 3.9%, 31.0 ± 3.2%, 4.7 ± 0.05 g/100 g muscle, respectively). There were no differences in fiber size or mitochondrial density among these species. Like other deep divers, S. coeruleoalba displayed locomotor muscle features that enhance oxygen storage capacity and metabolic efficiency but did not display features that limit aerobic capacity. These results suggest a previously undescribed muscle design for an active, small-bodied, deep-diving cetacean. HIGHLIGHTS: The locomotor muscle features displayed by the striped dolphin, which are unique among deep divers, enhance oxygen stores but do not limit aerobic capacity. This novel muscle design may facilitate the active lifestyle of this small-bodied deep diver.


Assuntos
Golfinhos/anatomia & histologia , Ecossistema , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Animais , Glicólise , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioglobina/metabolismo , Oxirredução , Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
2.
R Soc Open Sci ; 3(11): 160775, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018664

RESUMO

Birds undergo numerous changes as they progress through life-history stages, yet relatively few studies have examined how birds adapt to both the dynamic energetic and mechanical demands associated with such transitions. Myosin heavy chain (MyHC) expression, often linked with muscle fibre type, is strongly correlated with a muscle's mechanical power-generating capability, thus we examined several morphological properties, including MyHC expression of the pectoralis, in a long-distance migrant, the white-crowned sparrow (Zonotrichia leucophrys gambelii) throughout the progression from winter, spring departure and arrival on breeding grounds. White-crowned sparrows demonstrated significant phenotypic flexibility throughout the seasonal transition, including changes in prealternate moult status, lipid fuelling, body condition and flight muscle morphology. Pectoral MyHC expression also varied significantly over the course of the study. Wintering birds expressed a single, newly classified adult fast 2 isoform. At spring departure, pectoral isoform expression included two MyHC isoforms: the adult fast 2 isoform along with a smaller proportion of a newly present adult fast 1 isoform. By spring arrival, both adult fast isoforms present at departure remained, yet expression had shifted to a greater relative proportion of the adult fast 1 isoform. Altering pectoral MyHC isoform expression in preparation for and during spring migration may represent an adaptation to modulate muscle mechanical output to support long-distance flight.

3.
Am J Physiol Regul Integr Comp Physiol ; 306(11): R845-51, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24671242

RESUMO

Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off.


Assuntos
Aves/metabolismo , Tentilhões/metabolismo , Voo Animal/fisiologia , Membro Posterior/fisiologia , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Aves/classificação , Feminino , Masculino , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas , Isoformas de Proteínas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA