Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114335, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768765

RESUMO

The study endeavors the fabrication of extended-release adipic acid (APA) buccal films employing a quality by design (QbD) approach. The films intended for the treatment of xerostomia were developed utilizing hot-melt extrusion technology. The patient-centered quality target product profile was created, and the critical quality attributes were identified accordingly. Three early-stage formulation development trials, complemented by risk assessment aligned the formulation and process parameters with the product quality standards. Employing a D-optimal mixture design, the formulations were systematically optimized by evaluating three formulation variables: amount of the release-controlling polymer Eudragit® (E RSPO), bioadhesive agent Carbopol® (CBP 971P), and pore forming agent polyethylene glycol (PEG 1500) as independent variables, and % APA release in 1, 4 and 8 h as responses. Using design of experiment software (Design-Expert®), a total of 16 experimental runs were computed and extruded using a Thermofisher ScientificTM twin screw extruder. All films exhibited acceptable content uniformity and extended-release profiles with the potential for releasing APA for at least 8 h. Films containing 30% E RSPO, 10% CBP 971P, and 20% PEG 1500 released 88.6% APA in 8 h. Increasing the CBP concentration enhanced adhesiveness and swelling capacities while decreasing E RSPO concentration yielded films with higher mechanical strength. The release kinetics fitted well into Higuchi and Krosmeyer-Peppas models indicating a Fickian diffusion release mechanism.

2.
Pharmaceutics ; 16(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543219

RESUMO

Quetiapine fumarate (QTF) was approved for the treatment of schizophrenia and acute manic episodes. QTF can also be used as an adjunctive treatment for major depressive disorders. QTF oral bioavailability is limited due to its poor aqueous solubility and pre-systemic metabolism. The objective of the current investigation was the formulation development and manufacturing of solid self-nanoemulsifying drug delivery system (S-SNEDDS) formulation through a single-step continuous hot-melt extrusion (HME) process to address these drawbacks. In this study, Capmul® MCM, Gelucire® 48/16, and propylene glycol were selected as oil, surfactant, and co-surfactant, respectively, for the preparation of S-SNEDDS. Soluplus® and Klucel™ EF (1:1) were selected as the solid carrier. Response surface methodology in the form of central composite design (CCD) was utilized in the current experimental design to develop the S-SNEDDS formulations via a continuous HME technology. The developed formulations were evaluated for self-emulsifying properties, particle size distribution, thermal behavior, crystallinity, morphology, physicochemical incompatibility, accelerated stability, and in vitro drug release studies. The globule size and emulsification time of the optimized SNEDDS formulation was 92.27 ± 3.4 nm and 3.4 ± 3.38 min. The differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies revealed the amorphous nature of the drug within the formulation. There were no drug-excipient incompatibilities observed following the Fourier transform infrared (FTIR) spectroscopy. The optimized formulation showed an extended-release profile for 24 h. The optimized formulation was stable for three months (last time-point tested) at 40 °C/75% RH. Therefore, the developed S-SNEDDS formulation could be an effective oral delivery platform for QTF and could lead to better therapeutic outcomes.

3.
Int J Pharm ; 653: 123905, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38355075

RESUMO

The study aims to fabricate extended release (ER) tablets using a dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing technology based on hot melt extrusion (HME), using caffeine as the model compound. Three different ER tablets were developed, which obtained "delayed-release", "rapid-sustained release", and "release-lag-release" properties. Each type of tablet was printed with two different formulations. A novel printing method was employed in this study, which is to push the HME filament from behind with polylactic acid (PLA) to prevent sample damage by gears during the printing process. Powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC) results showed that caffeine was predominately amorphous in the final tablets. The dissolution of 3D printed tablets was assessed using a USP-II dissolution apparatus. ER tablets containing PVA dissolved faster than those developed with Kollicoat IR. Overall, this study revealed that ER tablets were successfully manufactured through HME paired with dual-nozzle FDM 3D printing and demonstrated the power of 3D printing in developing multi-layer tablets with complex structures.


Assuntos
Cafeína , Tecnologia de Extrusão por Fusão a Quente , Liberação Controlada de Fármacos , Comprimidos/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
4.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
5.
Expert Opin Drug Deliv ; : 1-15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236621

RESUMO

INTRODUCTION: The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED: This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION: 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.

6.
AAPS PharmSciTech ; 24(7): 203, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783961

RESUMO

The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Ibuprofeno , Solubilidade , Tecnologia de Extrusão por Fusão a Quente/métodos , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos/métodos , Comprimidos
7.
AAPS PharmSciTech ; 24(7): 189, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726501

RESUMO

The rationale for the current investigation is to study the crude banana peel (CBP) powder efficiency as a novel natural time-dependent polymer along with a pH-sensitive polymer to develop flurbiprofen colon-specific tablets. The direct compression method is utilized to prepare the flurbiprofen-CBP matrix tablets using 9 mm punches on the rotary tableting machine and subsequently coated with Eudragit® S 100 by a dip coating method. The tablets were evaluated for various tableting properties and in vitro drug release studies. From the results of dissolution studies, the F6 formulation showed negligible drug release (5.76% in 5 h) in the upper gastrointestinal tract and progressive release in the colon (99.08% in 24 h). Mean dissolution time, T10%, and T80% were found to be 13.33 h, 5.8 h, and 20.7 h, respectively, which explains the efficiency of the present combination of polymers for colon-specific drug release. From the dissolution studies results of stability studies, the similarity index was calculated and found to be 74.75. In conclusion, utilizing CBP as a natural, time-dependent polymer in conjunction with Eudragit® S 100 to develop the flurbiprofen tablets seems like a promising approach for delivering drugs specifically to the colon.


Assuntos
Flurbiprofeno , Musa , Pós , Colo , Polímeros , Comprimidos
8.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765172

RESUMO

Conventional cyclodextrin complexation enhances the solubility of poorly soluble drugs but is solvent-intensive and environmentally unfavorable. This study evaluated solvent-free hot-melt extrusion (HME) for forming cyclodextrin inclusion complexes to improve the solubility and dissolution of ibuprofen (IBU). Molecular docking confirmed IBU's hosting in Hydroxypropyl-ß-cyclodextrin (HPß-CD), while phase solubility revealed its complex stoichiometry and stability. In addition, an 11 mm twin-screw co-rotating extruder with PVP VA-64 as an auxiliary substance aided the complex formation and extrusion. Using QbD and the Box-Behnken design, we studied variables (barrel temperature, screw speed, and polymer concentration) and their impact on solubility and dissolution. The high polymer concentration and high screw speeds positively affected the dependent variables. However, higher temperatures had a negative effect. The lowest barrel temperature set near the Tg of the polymer, when combined with high polymer concentrations, resulted in high torques in HME and halted the extrusion process. Therefore, the temperature and polymer concentration should be selected to provide sufficient melt viscosities to aid the complex formation and extrusion process. Studies such as DSC and XRD revealed the amorphous conversion of IBU, while the inclusion complex formation was demonstrated by ATR and NMR studies. The dissolution of ternary inclusion complexes (TIC) produced from HME was found to be ≥85% released within 30 min. This finding implied the high solubility of IBU, according to the US FDA 2018 guidance for highly soluble compounds containing immediate-release solid oral dosage forms. Overall, the studies revealed the effect of various process parameters on the formation of CD inclusion complexes via HME.

9.
Pharmaceutics ; 15(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37765237

RESUMO

The current research aims to improve the solubility of the poorly soluble drug, i.e., ibuprofen, by developing self-emulsifying drug delivery systems (SEDDS) utilizing a twin screw melt granulation (TSMG) approach. Gelucire® 44/14, Gelucire® 48/16, and Transcutol® HP were screened as suitable excipients for developing the SEDDS formulations. Initially, liquid SEDDS (L-SEDDS) were developed with oil concentrations between 20-50% w/w and surfactant to co-surfactant ratios of 2:1, 4:1, 6:1. The stable formulations of L-SEDDS were transformed into solid SEDDS (S-SEDDS) using a suitable adsorbent carrier and compressed into tablets (T-SEDDS). The S-SEDDS has improved flow, drug release profiles, and permeability compared to pure drugs. The existence of the drug in an amorphous state was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction analysis (PXRD). The formulations with 20% w/w and 30% w/w of oil concentration and a 4:1 ratio of surfactant to co-surfactant have resulted in a stable homogeneous emulsion with a globule size of 14.67 ± 0.23 nm and 18.54 ± 0.55 nm. The compressed tablets were found stable after six months of storage at accelerated and long-term conditions. This shows the suitability of the TSMG approach as a single-step continuous manufacturing process for developing S-SEDDS formulations.

10.
Drug Deliv Transl Res ; 13(12): 3204-3222, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458973

RESUMO

Developing amorphous solid dispersions with good flow properties is always challenging for formulation scientists to convert into tablets. Hence, the present study investigates the impact of the combination of melt-dispersion and surface-adsorption methods to prepare melt-dispersion granules with enhanced dissolution rate and flow properties. This study covers the formulation and pharmacokinetic study of fast-dissolving flurbiprofen tablets using PEG 6000 (hydrophilic carrier) and lactose (adsorbent). Response surface methodology (RSM) using the central composite design (CCD) was used to optimize independent variables like carrier concentrations and adsorbent concentrations, and their interactions with the dependent variables (responses), including solubility, angle of repose, Carr's index, and cumulative % drug release, were investigated. The optimized formulation was selected based on the numerical optimization method and further investigated for FTIR spectroscopy, differential scanning calorimetry, and X-ray diffractometry. Then, the optimized formulation was compressed into tablets and evaluated for both in vitro dissolution and in vivo pharmacokinetics parameters. In vitro dissolution studies revealed that the prepared fast-dissolving tablets released the drug entirely within 15 min (Q15 of F4 tablets: 99.34 ± 1.24%), whereas conventional tablets took around 60 min for complete dissolution. Pharmacokinetic studies in rats revealed that fast-dissolving tablets showed 1.38-fold higher peak-plasma concentration (Cmax) and 1.39-fold higher bioavailability than conventional tablets. Overall, this study revealed the successful fabrication of fast-dissolving tablets via melt-dispersion paired with the surface-adsorption method to enhance the flow properties and the dissolution rate.


Assuntos
Flurbiprofeno , Ratos , Animais , Flurbiprofeno/química , Adsorção , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Solubilidade , Comprimidos/química , Varredura Diferencial de Calorimetria
11.
Pharm Res ; 40(6): 1519-1540, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138135

RESUMO

Despite numerous research efforts, drug delivery through the oral route remains a major challenge to formulation scientists. The oral delivery of drugs poses a significant challenge because more than 40% of new chemical entities are practically insoluble in water. Low aqueous solubility is the main problem encountered during the formulation development of new actives and for generic development. A complexation approach has been widely investigated to address this issue, which subsequently improves the bioavailability of these drugs. This review discusses the various types of complexes such as metal complex (drug-metal ion), organic molecules (drug-caffeine or drug-hydrophilic polymer), inclusion complex (drug-cyclodextrin), and pharmacosomes (drug-phospholipids) that improves the aqueous solubility, dissolution, and permeability of the drug along with the numerous case studies reported in the literature. Besides improving solubility, drug-complexation provides versatile functions like improving stability, reducing the toxicity of drugs, increasing or decreasing the dissolution rate, and enhancing bioavailability and biodistribution. Apart, various methods to predict the stoichiometric ratio of reactants and the stability of the developed complex are discussed.


Assuntos
Ciclodextrinas , Preparações Farmacêuticas/química , Distribuição Tecidual , Ciclodextrinas/química , Disponibilidade Biológica , Solubilidade , Água/química
12.
Braz. J. Pharm. Sci. (Online) ; 53(4): e00010, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889412

RESUMO

ABSTRACT The intent of the current work is to study the effect of polyethylene glycol 8000 and polyethylene glycol 10000 as hydrophilic carriers on dissolution behaviour of flurbiprofen. In the present study, solvent evaporation method was used to prepare flurbiprofen solid dispersions and evaluated for physico-chemical properties, drug-carrier compatibility studies and dissolution behaviour of drug. Solubility studies showed more solubility in higher pH values and formulations SD4 and SD8 were selected to prepare the fast dissolving tablets. FTIR and DSC study showed no interaction and drug was dispersed molecularly in hydrophilic carrier. XRD studies revealed that there was change in the crystallinity of the drug. The results of In vitro studies showed SD8 formulation confer significant improvement (p<0.05) in drug release, Q20 was 99.08±1.35% compared to conventional and marketed tablets (47.31±0.74% and 56.86±1.91%). The mean dissolution time (MDT) was reduced to 8.79 min compared to conventional and marketed tablets (25.76 and 22.22 min.) indicating faster drug release. The DE (% dissolution efficiency) was increased by 2.5 folds (61.63%) compared to conventional tablets (23.71%). From the results, it is evident that polyethylene glycol solid dispersions in less carrier ratio may enhance the solubility and there by improve the dissolution rate of flurbiprofen.


Assuntos
Solubilidade , Flurbiprofeno/análise , Dissolução , Comprimidos/classificação , Preparações Farmacêuticas
13.
Int J Pharm ; 491(1-2): 35-41, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26056929

RESUMO

The present study is designed and significantly planned to study the effect of double-compression coating on core mini-tablets to attain the chronopharmaceutical delivery of ketorolac tromethamine to colon. Double-compression coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. From the in vitro drug release studies, F6 tablets was considered as the optimized formulation, which retarded the drug release in stomach and small intestine (3.51 ± 0.15% in 5h) and progressively released to colon (99.82 ± 0.69% in 24h). The release process followed supercase-II transport with zero order release kinetics. Similarity factor calculated from stability studies was found to be 84.73. From the pharmacokinetic evaluation, the immediate release core mini-tablets reached peak plasma concentration (Cmax of 4532.68 ± 28.14 ng/ml) at 2h Tmax and colon targeted tablets showed Cmax=3782.29 ± 17.83 ng/ml at 12h Tmax. The area under the curve and mean resident time of core mini-tablets were found to be 11,278.26 ± 132.67 ng-h/ml and 3.68 h respectively while 17,324.48 ± 56.32 ng-h/ml and 10.39 h for compression coated tablets. Hence the development of double-compression coated tablets is a promising way to gain the chronopharmaceutical delivery of ketorolac tromethamine to colon.


Assuntos
Colo/metabolismo , Cetorolaco de Trometamina/química , Cetorolaco de Trometamina/farmacocinética , Comprimidos/química , Comprimidos/farmacocinética , Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Excipientes/farmacocinética , Mucosa Gástrica/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Intestino Delgado/metabolismo , Cinética , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética
14.
AAPS PharmSciTech ; 16(6): 1465-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26017285

RESUMO

A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.


Assuntos
Colo/metabolismo , Flurbiprofeno/química , Flurbiprofeno/farmacocinética , Comprimidos com Revestimento Entérico/química , Comprimidos com Revestimento Entérico/farmacocinética , Adulto , Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Excipientes/química , Mucosa Gástrica/metabolismo , Humanos , Derivados da Hipromelose/química , Intestino Delgado/metabolismo , Polímeros/química
15.
Drug Dev Ind Pharm ; 41(8): 1254-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25039470

RESUMO

CONTEXT: Development of solid dispersions is to improve the therapeutic efficacy by increasing the drug solubility, dissolution rate, bioavailability as well as to attain rapid onset of action. OBJECTIVE: The present research deals with the development of solid dispersions of flurbiprofen which is poorly water soluble to improve the solubility and dissolution rate using gelucires. MATERIALS AND METHODS: In this study, solid dispersions were prepared following solvent evaporation method using gelucire 44/14 and gelucire 50/13 as carriers in different ratios. Then the formulations were evaluated for different physical parameters, solubility studies, DSC, FTIR studies and in vitro dissolution studies to select the best formulation that shows rapid dissolution rate and finally subjected to pharmacokinetic studies. RESULTS AND DISCUSSION: From the in vitro dissolution study, formulation F3 showed the better improvement in solubility and dissolution rate. From the pharmacokinetic evaluation, the control tablets produced peak plasma concentration (Cmax) of 9140.84 ± 614.36 ng/ml at 3 h Tmax and solid dispersion tablets showed Cmax = 11 445.46 ± 149.23 ng/ml at 2 h Tmax. The area under the curve for the control and solid dispersion tablets was 31 495.16 ± 619.92 and 43 126.52 ± 688.89 ng h/ml and the mean resident time was 3.99 and 3.68 h, respectively. CONCLUSION: From the above results, it is concluded that the formulation of gelucire 44/14 solid dispersions is able to improve the solubility, dissolution rate as well as the absorption rate of flurbiprofen than pure form of drug.


Assuntos
Gorduras/química , Gorduras/farmacocinética , Flurbiprofeno/química , Flurbiprofeno/farmacocinética , Óleos/química , Óleos/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Química Farmacêutica , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Masculino , Coelhos , Solubilidade
16.
Eur J Drug Metab Pharmacokinet ; 40(3): 301-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916715

RESUMO

Present research deals with the development of compression-coated flurbiprofen colon-targeted tablets to retard the drug release in the upper gastro intestinal system, but progressively release the drug in the colon. Flurbiprofen core tablets were prepared by direct compression method and were compression coated using sodium alginate and Eudragit S100. The formulation is optimized based on the in vitro drug release study and further evaluated by X-ray imaging and pharmacokinetic studies in healthy humans for colonic delivery. The optimized formulation showed negligible drug release (4.33 ± 0.06 %) in the initial lag period followed by progressive release (100.78 ± 0.64 %) for 24 h. The X-ray imaging in human volunteers showed that the tablets reached the colon without disintegrating in the upper gastrointestinal tract. The C max of colon-targeted tablets was 12,374.67 ng/ml at T max 10 h, where as in case of immediate release tablets the C max was 15,677.52 ng/ml at T max 3 h, that signifies the ability of compression-coated tablets to target the colon. Development of compression-coated tablets using combination of time-dependent and pH-sensitive approaches was suitable to target the flurbiprofen to colon.


Assuntos
Colo/efeitos dos fármacos , Flurbiprofeno/farmacocinética , Comprimidos/farmacocinética , Administração Oral , Adulto , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Flurbiprofeno/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Ácidos Polimetacrílicos/química , Solubilidade , Comprimidos/química , Adulto Jovem
17.
Int Sch Res Notices ; 2014: 281376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27355021

RESUMO

The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q 30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate.

18.
Drug Deliv Transl Res ; 4(4): 310-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25787064

RESUMO

Present research efforts are focused in developing compression-coated ketorolac tromethamine tablets to improve the drug levels in colon by retarding the drug release in the stomach and small intestine. To achieve this objective, core tablets containing ketorolac tromethamine were prepared by direct compression and compression coated with sodium alginate. The developed tablets were evaluated for physical properties, in vitro drug release, X-ray imaging, and pharmacokinetic studies in human volunteers. Based on the in vitro drug release study, the optimized formulation showed very little drug release (6.75 ± 0.49 %) in the initial lag period of 5 h, followed by progressive release up to 97.47 ± 0.93 % within 24 h. The X-ray imaging of tablets in human volunteers showed that the tablets reached the colon without disintegrating in the upper gastrointestinal tract. From the pharmacokinetic study, the C max of colon-targeted tablets was 3,486.70 ng/ml at T max 10 h, whereas in the case of immediate-release tablets, the C max of 4,506.31 ng/ml at T max 2 h signifies the ability of compression-coated tablets to target the colon. In conclusion, compression-coated tablets are suitable to deliver ketorolac tromethamine to the colon.

19.
Biomed Res Int ; 2013: 287919, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260738

RESUMO

The rationale of the present study is to formulate flurbiprofen colon targeted compression coated tablets using guar gum to improve the therapeutic efficacy by increasing drug levels in colon, and also to reduce the side effects in upper gastrointestinal tract. Direct compression method was used to prepare flurbiprofen core tablets, and they were compression coated with guar gum. Then the tablets were optimized with the support of in vitro dissolution studies, and further it was proved by pharmacokinetic studies. The optimized formulation (F4) showed almost complete drug release in the colon (99.86%) within 24 h without drug loss in the initial lag period of 5 h (only 6.84% drug release was observed during this period). The pharmacokinetic estimations proved the capability of guar gum compression coated tablets to achieve colon targeting. The C(max) of colon targeted tablets was 11956.15 ng/mL at T max of 10 h whereas it was 15677.52 ng/mL at 3 h in case of immediate release tablets. The area under the curve for the immediate release and compression coated tablets was 40385.78 and 78214.50 ng-h/mL and the mean resident time was 3.49 and 10.78 h, respectively. In conclusion, formulation of guar gum compression coated tablets was appropriate for colon targeting of flurbiprofen.


Assuntos
Química Farmacêutica/métodos , Colo/efeitos dos fármacos , Flurbiprofeno/farmacologia , Flurbiprofeno/farmacocinética , Galactanos/química , Mananas/química , Gomas Vegetais/química , Estabilidade de Medicamentos , Flurbiprofeno/sangue , Voluntários Saudáveis , Humanos , Cinética , Comprimidos com Revestimento Entérico/farmacocinética , Comprimidos com Revestimento Entérico/farmacologia , Fatores de Tempo
20.
Expert Opin Drug Deliv ; 10(1): 33-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23199134

RESUMO

OBJECTIVE: The present study was intended to develop a time-dependent colon-targeted compression-coated tablets of ketorolac tromethamine (KTM) using hydroxypropyl methylcellulose (HPMC) that release the drug slowly but completely in the colonic region by retarding the drug releases in stomach and small intestine. METHODS: KTM core tablets were prepared by direct compression method and were compression coated with HPMC. The formulation is optimized based on the in vitro drug release studies and further evaluated by X-ray imaging technique in healthy humans to ensure the colonic delivery. To prove these results, in vivo pharmacokinetic studies in human volunteers were designed to study the in vitro-in vivo correlation. RESULTS AND DISCUSSIONS: From the in vitro dissolution study, optimized formulation F3 showed negligible drug release (6.75 ± 0.49%) in the initial lag period followed by slow release (97.47 ± 0.93%) for 24 h which clearly indicates that the drug is delivered to the colon. The X-ray imaging studies showed that the tablets reached the colon without disintegrating in upper gastrointestinal system. From the pharmacokinetic evaluation, the immediate-release tablets producing peak plasma concentration (C(max)) was 4482.74 ng/ml at 2 h T(max) and colon-targeted tablets showed C(max) = 3562.67 ng/ml at 10 h T(max). The area under the curve for the immediate-release and compression-coated tablets was 10595.14 and 18796.70 ng h/ml and the mean resident time was 3.82 and 10.75 h, respectively. CONCLUSION: Thus, the compression-coated tablets based on time-dependent approach were preferred for colon-targeted delivery of ketorolac.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Colo/metabolismo , Cetorolaco de Trometamina/farmacocinética , Administração Oral , Adulto , Anti-Inflamatórios não Esteroides/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Colo/diagnóstico por imagem , Estudos Cross-Over , Sistemas de Liberação de Medicamentos/métodos , Humanos , Derivados da Hipromelose , Cetorolaco de Trometamina/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Preparações Farmacêuticas , Radiografia , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos com Revestimento Entérico/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA