Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 45(1): 45-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35635679

RESUMO

Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Ratos , Animais , Dopamina/metabolismo , Ratos Endogâmicos F344 , Restrição Calórica , Nomifensina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Substância Negra/metabolismo
2.
ACS Chem Neurosci ; 13(2): 257-274, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990116

RESUMO

Post-traumatic stress disorder (PTSD) is associated with cognitive deficits, oxidative stress, and inflammation. Animal models have recapitulated features of PTSD, but no comparative RNA sequencing analysis of differentially expressed genes (DEGs) in the brain between PTSD and animal models of traumatic stress has been carried out. We compared DEGs from the prefrontal cortex (PFC) of an established stress model to DEGs from the dorsolateral PFC (dlPFC) of humans. We observed a significant enrichment of rat DEGs in human PTSD and identified 20 overlapping DEGs, of which 17 (85%) are directionally concordant. N,N-dimethyltryptamine (DMT) is a known indirect antioxidant, anti-inflammatory, and neuroprotective compound with antidepressant and plasticity-facilitating effects. We tested the capacity of DMT, the monoamine oxidase inhibitor (MAOI) harmaline, and "pharmahuasca" (DMT + harmaline) to reduce reactive oxygen species (ROS) production and inflammatory gene expression and to modulate neuroplasticity-related gene expression in the model. We administered DMT (2 mg/kg IP), harmaline (1.5 mg/kg IP), pharmahuasca, or vehicle every other day for 5 days, following a 30 day stress regiment. We measured ROS production in the PFC and hippocampus (HC) by electron paramagnetic resonance spectroscopy and sequenced total mRNA in the PFC. We also performed in vitro assays to measure the affinity and efficacy of DMT and harmaline at 5HT2AR compared to 5-HT. DMT and pharmahuasca reduced ROS production in the PFC and HC, while harmaline had mixed effects. Treatments normalized 9, 12, and 14 overlapping DEGs, and pathway analysis implicated that genes were involved in ROS production, inflammation, growth factor signaling, neurotransmission, and neuroplasticity.


Assuntos
N,N-Dimetiltriptamina , Transtornos de Estresse Pós-Traumáticos , Animais , Córtex Pré-Frontal Dorsolateral , Humanos , Ratos , Espécies Reativas de Oxigênio , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico
3.
J Gerontol A Biol Sci Med Sci ; 73(1): 11-20, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-28637176

RESUMO

The escalating increase in retirees living beyond their eighth decade brings increased prevalence of aging-related impairments, including locomotor impairment (Parkinsonism) that may affect ~50% of those reaching age 80, but has no confirmed neurobiological mechanism. Lifestyle strategies that attenuate motor decline, and its allied mechanisms, must be identified. Aging studies report little to moderate loss of striatal dopamine (DA) or tyrosine hydroxylase (TH) in nigrostriatal terminals, in contrast to ~70%-80% loss associated with bradykinesia onset in Parkinson's disease. These studies evaluated the effect of ~6 months 30% calorie restriction (CR) on nigrostriatal DA regulation and aging-related locomotor decline initiated at 12 months of age in Brown-Norway Fischer F1 hybrid rats. The aging-related decline in locomotor activity was prevented by CR. However, striatal DA or TH expression was decreased in the CR group, but increased in substantia nigra versus the ad libitum group or 12-month-old cohort. In a 4- to 6-month-old cohort, pharmacological TH inhibition reduced striatal DA ~30%, comparable with decreases reported in aged rats and the CR group, without affecting locomotor activity. The dissociation of moderate striatal DA reduction from locomotor activity seen in both studies suggests that aging-related decreases in striatal DA are dissociated from locomotor decline.


Assuntos
Restrição Calórica/métodos , Corpo Estriado/metabolismo , Dopamina/biossíntese , Hipocinesia/metabolismo , Locomoção/fisiologia , Doença de Parkinson/prevenção & controle , Tirosina 3-Mono-Oxigenase/biossíntese , Envelhecimento/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Seguimentos , Hipocinesia/dietoterapia , Hipocinesia/etiologia , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Fosforilação , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA