Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502186

RESUMO

Efficient and stable restoration of male fertility (Rf) is a prerequisite for large-scale hybrid seed production but remains an inherent issue in the predominant fertility control system of rye (Secale cereale L.). The 'Gülzow' (G)-type cytoplasmic male sterility (CMS) system in hybrid rye breeding exhibits a superior Rf. While having received little scientific attention, one major G-type Rf gene has been identified on 4RL (Rfg1) and two minor genes on 3R (Rfg2) and 6R (Rfg3) chromosomes. Here, we report a comprehensive investigation of the genetics underlying restoration of male fertility in a large G-type CMS breeding system using recent advents in rye genomic resources. This includes: (I) genome-wide association studies (GWAS) on G-type germplasm; (II) GWAS on a biparental mapping population; and (III) an RNA sequence study to investigate the expression of genes residing in Rf-associated regions in G-type rye hybrids. Our findings provide compelling evidence of a novel major G-type non-PPR Rf gene on the 3RL chromosome belonging to the mitochondrial transcription termination factor gene family. We provisionally denote the identified novel Rf gene on 3RL RfNOS1. The discovery made in this study is distinct from known P- and C-type systems in rye as well as recognized CMS systems in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). We believe this study constitutes a stepping stone towards understanding the restoration of male fertility in the G-type CMS system and potential resources for addressing the inherent issues of the P-type system.


Assuntos
Óxido Nítrico Sintase Tipo I/fisiologia , Polimorfismo de Nucleotídeo Único , Secale/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Infertilidade das Plantas/genética , Secale/enzimologia , Análise de Sequência de RNA
2.
Cells ; 11(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011626

RESUMO

Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Puccinia/fisiologia , Secale/microbiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Fenótipo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Secale/genética , Secale/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA