RESUMO
High performance photodetectors based on colloidal quantum dots have been demonstrated in a wide spectral range spanning from the visible to the mid infrared. Quantum dot photodetectors typically show a low-pass type spectral response with a tunable cutoff wavelength. In this paper, we propose a method for the realization of narrowband photodetectors based on the combination of photoconductors and optical filters, both realized with colloidal PbS quantum dots. We demonstrate that an array of such narrowband photodetectors can be effectively employed for the realization of a compact wavemeter operating in the visible and near-infrared spectral range.
RESUMO
PbS colloidal quantum dots (QDs) are a promising material for the realization of low-cost, high-responsivity near-infrared photodetectors. Previously reported attempts showed high responsivity but a fast performance decay in air-exposed devices, demanding encapsulation of the photodetectors. Conversely, devices with very high air stability have been demonstrated but the low trap-state density hinders photoconductive gain and reduces overall responsivity. In this paper, photoconductive devices prepared with partially tetrabutylammonium iodide exchanged PbS QDs are presented with enhanced air stability and high responsivity at low voltage, low optical power.
RESUMO
Colloidal quantum dots have recently attracted lot of interest in the fabrication of optoelectronic devices due to their unique optical properties and their simple and low cost fabrication. PbS nanocrystals emerged as the most advanced colloidal material for near infrared photodetectors. In this work we report on the fabrication and characterization of PbS colloidal quantum dot photoconductors. In order to make devices suitable for the monolithic integration with silicon electronics, we propose a simple and low cost process for the fabrication of photodetectors and investigate their operation at very low voltage bias. Our photoconductors feature high responsivity and detectivity at 1.3 µm and 1 V bias with maximum values of 30 A/W and 2·1010 cmHz1/2W-1, respectively. Detectivity close to 1011 cmHz1/2W-1 has been obtained resorting to bridge sensor readout.