Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923610

RESUMO

The presented work is dedicated to the study and comparison of scintillating properties of zinc oxide samples prepared in different morphologies: whiskers, nanowalls, multipods, and ceramics. It was shown that total transmittance, photo- and radioluminescence spectra, and radioluminescence kinetics can vary significantly depending on sample structure and preparation conditions. The highest total transmittance was registered for ZnO ceramics (>50% at 0.5 mm thickness). Differences in the transmittance of whiskers, nanowalls, and multipods can be attributed to their shape and thickness which affects the amount of light refraction and scattering. The study of radioluminescence demonstrated that all samples, except undoped ceramics and air annealed whiskers, have predominantly fast luminescence with a decay time <1 ns. High transmittance of ceramics opens the way for their use in the registration of high energy X-ray and gamma radiation, where a large volume of scintillators is required. In cases, where large scintillator thickness is not a necessity, one may prefer to use other ZnO structures, such as ensembles of whiskers and nanowalls. Studies of near-band-edge luminescence components at low temperatures showed that the structure is quite similar in all samples except Ga doped ceramics.

2.
J Phys Chem A ; 123(9): 1894-1903, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30775917

RESUMO

Afterglow is an important phenomenon in luminescent materials and can be desired (e.g., persistent phosphors) or undesired (e.g., scintillators). Understanding and predicting afterglow is often based on analysis of thermally stimulated luminescence (TSL) glow curves, assuming the presence of one or more discrete trap states. Here we present a new approach for the description of the time-dependent afterglow from TSL glow curves using a model with a distribution of trap depths. The method is based on the deconvolution of the energy dependent density of occupied traps derived from TSL glow curves using Tikhonov regularization. To test the validity of this new approach, the procedure is applied to experimental TSL and afterglow data for Lu1Gd2Ga3Al2O12:Ce ceramics codoped with 40 ppm of Yb3+ or Eu3+ traps. The experimentally measured afterglow curves are compared with simulations based on models with and without the continuous trap depth distribution. The analysis clearly demonstrates the presence of a distribution of trap depths and shows that the new approach gives a more accurate description of the experimentally observed afterglow. The new method will be especially useful in understanding and reducing undesired afterglow in scintillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA