Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Endocrinol ; 2019: 6325169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275375

RESUMO

Semen hyperviscosity impairs sperm motility and can lead to male infertility. This prospective study aimed at assessing the ability of exogenous DNase in improving sperm quality, taking into consideration that DNase has been found in the seminal plasma of several species and that neutrophils release chromatin in order to trap bacteria. A total of seventy-seven semen samples with high seminal viscosity (HSV) as the study group and sixty-two semen samples with normal seminal viscosity (NSV) as the control group were compared in this analysis. These semen samples were divided into three groups of receiving treatment (a) with DNase I at 37°C for 15 min, (b) by density gradient centrifugation, and (c) with a combination of the above two methods. Following a fifteen-minute treatment of hyperviscous semen, the motility of spermatozoa in 83% of semen samples increased to a statistically significant degree. On the contrary, DNase treatment of semen with normal viscosity had no such effects. The above treatment was also accompanied by a significant increase in the percentage of normal spermatozoa, resulting in a major decrease of the teratozoospermia index. Comparison between semen samples that underwent density gradient centrifugation following DNase I treatment, to those collected after density gradient treatment alone, showed that in the first case the results were more spectacular. The evaluation of each preparation in terms of yield (% total progressively motile sperm count after treatment in relation to the initial total sperm count) revealed that the combined approach resulted in 29.8% vs. 18.5% with density treatment alone (p=0.0121). DNase I treatment results in an improvement of sperm motility and morphology and could be beneficial to men with hyperviscous semen in assisted reproduction protocols.

2.
Cell Signal ; 22(5): 791-800, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20067833

RESUMO

Chronic hyperglycemia and inflammatory cytokines disrupt and/or attenuate signal transduction pathways that promote normal beta-cell survival, leading to the destruction of endocrine pancreas in type 2 diabetes. There is convincing evidence that autocrine insulin signalling exerts protective anti-apoptotic effects on beta cells. Suppressors of cytokine signalling (SOCS) were induced by several cytokines and inhibit insulin-initiated signal transduction. The aim of this study was to investigate whether high glucose can influence endogenous interleukin-1beta (IL-1beta) and SOCS expression thus affecting insulin signalling and survival in insulin-producing mouse pancreatic beta cells (betaTC-6). Results showed that prolonged exposure of betaTC-6 cells to increased glucose concentrations resulted in significant inhibition of insulin-induced tyrosine phosphorylation of the insulin receptor (IR), and insulin receptor substrate-2 (IRS-2) as well as PI3-kinase activation. These changes were accompanied by impaired activation of the anti-apoptotic signalling protein Akt and annulment of Akt-mediated suppression of the Forkhead family of transcription factors (FoxO) activation. Glucose-induced attenuation of IRS-2/Akt-mediated signalling was associated with increased IL-1beta expression. Enhanced endogenous IL-1beta specifically induced mRNA and protein expression of SOCS-1 in betaTC-6 cells. Inhibition of SOCS-1 expression by SOCS-1-specific small interfering RNA restored IRS-2/PI3K-mediated Akt phosphorylation suppressed by high glucose. The upregulation of endogenous cytokine signalling and FoxO activation were accompanied by enhanced caspase-3 activation and increased susceptibility of cells to apoptosis. These results indicated that glucose-induced endogenous IL-1beta expression increased betaTC-6 cells apoptosis by inhibiting, at least in part, IRS-2/Akt-mediated signalling through SOCS-1 upregulation.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Interleucina-1beta/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Interleucina-1beta/metabolismo , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA