Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
ACS Appl Mater Interfaces ; 16(17): 22066-22078, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629710

RESUMO

Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a ß-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.

2.
J Environ Manage ; 356: 120458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479286

RESUMO

The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.


Assuntos
Clorofila , Óleos de Plantas , Polifenóis , Temperatura , Biomassa , Clorofila A
3.
Bioresour Technol ; 394: 130243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142910

RESUMO

The research examined the capabilities of Yarrowia lipolytica (YL) and Pichia farinosa (PF) in converting sugars to ethanol and oleochemicals. Lipid, ethanol, protein yield and gene-expressions were analysed at different substrate concentrations (3 to 30 g/L) with glucose, food waste, and fermentation-effluent. Optimal results were obtained at 20 g/L using both synthetic carbon with 4.6 % of total lipid yield. Lauric and Caprylic acid dominance was noted in total lipid fractions. Protein accumulation (6 g/L) was observed in glucose system (20 g/L) indicating yeast strains potential as single-cell proteins (SCP). Fatty-acid desaturase (FAD12) and alcohol dehydrogenase (ADH) expressions were higher at optimum condition of YL (1.15 × 10-1, 3.8 × 10-2) and PF (5.8 × 10-2, 3.8 × 10-2) respectively. Maximum carbon reduction of 87 % depicted at best condition, aligning with metabolic yield. These findings highlights promising role of yeast as biorefinery biocatalyst.


Assuntos
Eliminação de Resíduos , Yarrowia , Yarrowia/metabolismo , Etanol/metabolismo , Pichia/metabolismo , Alimentos , Lipídeos , Glucose/metabolismo , Carbono/metabolismo
4.
Environ Sci (Camb) ; 9(10): 2487-2500, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38013896

RESUMO

Bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) present numerous benefits for the removal and recovery of heavy metals from industrial and municipal wastewater. This study evaluated the life cycle environmental impact of simultaneous hexavalent chromium (Cr(vi)) removal and bioelectricity generation in a dual chamber MFC. Results indicate a global warming potential (GWP) of -0.44 kg carbon dioxide (CO2)-eq. per kg of chromium recovered, representing a total saving of up to 97% in comparison with existing technologies for the treatment of Cr(vi) laden wastewater. The observed savings in GWP (kg CO2-eq.) reduced to 61.8% with the removal of the allocated credits from the MFC system's life cycle. Of all the various sub-systems considered within the chromium waste treatment plant, the MFC unit and the chromium metal recovery unit had the largest impact in terms of GWP (kg CO2-eq.), non-renewable energy use (NREU) (MJ primary), and mineral extraction (MJ surplus). A statistical analysis of the results showed that an increase in chemical oxygen demand (COD) was associated with a reduction in GWP (kg CO2-eq.), NREU (MJ primary), and terrestrial ecotoxicity (kg triethylene glycol equivalents into soil (TEG soil)-eq.). The life cycle assessment (LCA) output showed a high sensitivity to changes in the materials and construction processes of MFC reactors, indicating the need for further research into sustainable materials for MFC reactor construction. The observed interaction effects of process variables also suggest the need for combined optimization of these variables. Analysis with other types of metals is also important to further demonstrate the practical viability of metal removal through MFCs.

5.
Bioelectrochemistry ; 154: 108550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666049

RESUMO

Specific stimuli to plants influence intracellular and intercellular communications, activation of ion channels, gene expression, growth and development. The functional role of self-induced in situ electrical stimuli at the rhizosphere of the plant by placing electrode assembly in a defined circuit mode was studied on the growth and development of Vigna radiata and Cicer arietinum plants. Experiments were designed with three-circuit mode configurational variations (CC-P, OC-P and SC-P) and compared with the relative performance of control system (non-potential). The plants cultivated under the in situ electrical stimuli (low-current) showed a marked influence on growth and photosynthetic performance of the plants. CC-P operation showed improved vegetative growth, characterized by increased roots, shoots and biomass along with accelerated plant growth from seed germination to vegetation, flowering and pod formation leading towards earlier and more robust flowering compared to control system. Plants also showed higher aquaporin gene expression levels in CC-P operation. The control operation showed 10 days additional maturation time compared to CC-P operation. The strategy can be beneficially applied to augment the bioremediation capacity of complex pollutants with reference to phytoremediation or constructed wetland systems where the plant and its roots are the main enabler apart from agriculture applications specific to nursery-raised or transplanted plants.


Assuntos
Cicer , Vigna , Vigna/genética , Cicer/genética , Morfogênese , Fotossíntese , Estimulação Elétrica , Expressão Gênica
6.
Bioresour Technol ; 380: 129007, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37061171

RESUMO

The fourth industrial revolution anticipates energy to be sustainable, renewable and green. Hydrogen (H2) is one of the green forms of energy and is deemed a possible solution to climate change. Light-dependent H2 production is a promising method derived from nature's most copious resources: solar energy, water and biomass. Reduced environmental impacts, absorption of carbon dioxide, relative efficiency, and cost economics made it an eye-catching approach. However, low light conversion efficiency, limited ability to utilize complex carbohydrates, and the O2 sensitivity of enzymes result in low yield. Isolation of efficient H2 producers, development of microbial consortia having a synergistic impact, genetically improved strains, regulating bidirectional hydrogenase activity, physiological parameters, immobilization, novel photobioreactors, and additive strategies are summarized for their possibilities to augment the processes of bio-photolysis and photo-fermentation. The challenges and future perspectives have been addressed to explore a sustainable way forward in a bio-refinery approach.


Assuntos
Biocombustíveis , Fotobiorreatores , Fermentação , Biomassa , Hidrogênio/análise
7.
Bioresour Technol ; 379: 128954, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963697

RESUMO

The study focuses on the effective conversion of sugarcane bagasse (SCB) by catalytic deoxygenation using various alkali and metal-based catalysts under N2 pressure employing water as solvent. The specific influence of catalyst over bio-crude yields (bio-oil and aqueous fraction) including energy recovery ratio was explored. The optimum catalytic condition (Ru/C) resulted in âˆ¼ 70% of bio-crude and 28% of bio-oil with an improved HHV (31.6 MJ/kg) having 11.6% of aliphatic/aromatic hydrocarbons (C10-C20) which can be further upgraded to drop-in fuels. The biocrude composed of 44% of aqueous soluble organic fraction (HTL-AF). Further, the carbon-rich HTL-AF was valorized through acidogenic fermentation to yield biohydrogen (Bio-H2). The maximum bio-H2 production of 201 mL/g of TOC conversion (K2CO3 catalyst) was observed with 7.7 g/L of VFA. The SCB was valorized in a biorefinery design with the production of fuels and chemical intermediates in a circular chemistry approach.


Assuntos
Celulose , Saccharum , Temperatura , Biocombustíveis , Água , Hidrocarbonetos , Biomassa
8.
Bioresour Technol ; 376: 128877, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921641

RESUMO

Monoraphidium sp. KMC4 was cultivated mixotrophically for simultaneous treatment of dairy wastewater and biomass production. The KMC4 was cultivated with varying chemical oxygen demand concentrations of simulated synthetic dairy wastewater. Monoraphidium sp. KMC4 outperformed in 50% strength with biomass concentration of 1.47 g L-1. A significant change in biomass of 3.69 g L-1 was achieved after maintaining the pH of algal culture. The nutrient consumption promoted microalgal growth in the form of biomass productivity (122 mg L-1 day-1), accumulation of carbohydrate (28.73±1.6 wt%), protein (48.50±1.3 wt%), and lipid (20.29±2.3 wt%). This strain showed efficacious performance in treating simulated synthetic dairy wastewater obtaining biomass for various applications. The algal biomass derived from wastewater reported a significant volatile matter content and higher heating value. The biomass demonstrates satisfactory thermal degradation behavior which reveals its feasibility as feedstock for thermochemical conversion to biocrude. The integration of biomass production in high-scale raceway pond along with biocrude production is a promising pathway toward the generation of green energy for replacing traditional fossil fuels..


Assuntos
Clorofíceas , Microalgas , Águas Residuárias , Plantas , Lagoas , Biomassa , Biocombustíveis
10.
Environ Pollut ; 324: 121320, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805470

RESUMO

Decentralized handlooms are being traditionally practised throughout India. Siripuram village known for traditional Pochampally/Ikat work was considered as a case study for detailed investigation towards providing a sustainable solution. Nearly 65% of village population solely depend on weaving and dyeing works as primary occupation based on the household survey and generated wash water of 127 KLD on an average from the dyeing operations. Initially, a topographical survey (Aerial drone; PHANTOM 4 RTK UAV) was carried out to understand the drainage pattern, elevations, contours and interlinked with domestic and dyeing functions. The characteristics of combined wastewater and dye wash water were studied at lab scale using sequential batch (SBR) operation under aerobic (SBRAe) and aerobic-anoxic (SBRAex) microenvironments. SBRAex microenvironment showed effective organic and nutrients removal due to infused anoxic microenvironment. Treatment studies depicted 76.2% of organic fraction, 73.3% of phosphate, and 81.6% of nitrate removal. Based on the lab scale studies a closed-loop decentralized effluent treatment system was designed to ensure zero-liquid discharge (ZLD).


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Águas Residuárias , Compostos Orgânicos , Têxteis , Corantes , Água , Poluentes Químicos da Água/análise
11.
Bioresour Technol ; 370: 128487, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528180

RESUMO

Enzymatic treatment of food and vegetable waste (FVW) is an eco-friendly approach for producing industrially relevant value-added products. This review describes the sources, activities and potential applications of crucial enzymes in FVW valorization. The specific roles of amylase, cellulase, xylanase, ligninase, protease, pectinase, tannase, lipase and zymase enzymes were explained. The exhaustive list of value-added products that could be produced from FVW is presented. FVW valorization through enzymatic and whole-cell enzymatic valorization was compared. The note on global firms specialized in enzyme production reiterates the economic importance of enzymatic treatment. This review provides information on choosing an efficient enzymatic FVW treatment strategy, such as nanoenzyme and cross-linked based enzyme immobilization, to make the process viable, sustainable and cheaper. Finally, the importance of life cycle assessment of enzymatic valorization of FVW was impressed to prove this approach is a better option to shift from a linear to a circular economy.


Assuntos
Celulase , Verduras , Amilases , Peptídeo Hidrolases , Endopeptidases
12.
Bioresour Technol ; 363: 128013, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155807

RESUMO

Biogenic municipal solid waste (BMSW) and food waste (FW) with high energy density are ready to tap renewable resources for industrial scale ethanol refinery foreseen for establishing bio-based society. Circular economy has occupied limelight in the domain of renewable energy and sustainable chemicals production. The present review highlights the importance of BMSW/FW as newer feed reserves that can cater as parent molecules for an array of high-visibility industrial products along with bioethanol upon implementing a judicious closed-cascade mass-flow mechanism enabling ultimate feed and waste stream valorisation. Though these organics are attractive resources their true potential for energy production has not been quantified yet owing to their heterogeneous composition and associated technical challenges thus pushing waste refinery and industrial symbiosis concepts to backseat. To accelerate this industrial vision, the novel bioprocessing strategies for enhanced and low-cost production of bioethanol from BMSW/FW along with other commercially imperative product portfolio have been discussed.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Biocombustíveis , Etanol , Alimentos
13.
Bioresour Technol ; 363: 127934, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100184

RESUMO

To assess biohydrogen for future green energy, this review revisited dark fermentation and microbial electrolysis cells (MECs). Hydrogen evolution rate in mesophilic dark fermentation is as high as 192 m3 H2/m3-d, however hydrogen yield is limited. MECs are ideal for improving hydrogen yield from carboxylate accumulated from dark fermentation, whereas hydrogen production rate is too slow in MECs. Hence, improving anode kinetic is very important for realizing MEC biohydrogen. Intracellular electron transfer (IET) and extracellular electron transfer (EET) can limit current density in MECs, which is proportional to hydrogen evolution rate. EET does not limit current density once electrically conductive biofilms are formed on anodes, potentially producing 300 A/m2. Hence, IET kinetics mainly govern current density in MECs. Among parameters associated with IET kinetic, population of anode-respiring bacteria in anode biofilms, biofilm density of active microorganisms, biofilm thickness, and alkalinity are critical for current density.


Assuntos
Fontes de Energia Bioelétrica , Eletrólise , Biofilmes , Eletrodos , Fermentação , Hidrogênio
14.
Bioresour Technol ; 360: 127446, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690240

RESUMO

The study explored the spent wash valorisation into value added biobased products viz. volatile fatty acids (VFAs), biohydrogen (bio-H2), methane (CH4) and biohythane (bio-H-CNG) based on eight selected parameters employing design of experiment (DOE) approach. Selectively enriched biocatalyst showed marked influence on the production of acidogenic products (bio-H2 and VFA) while untreated inoculum resulted in higher CH4 and bio-H-CNG generation. CaCO3 showed potential for butyric acid (HBu) production while Na2CO3 specifically yielded higher acetic acid (HAc) when supplemented as buffering agents. Higher degree of acidification (DOA; 49.8%) was observed at lower organic load (OL; 30 g/L). Biogas production and profile was influenced by OL, enrichment of biocatalyst and supplemented buffering agent. Higher OL related to higher bioproduct production, while yields of the respective products were higher at lower OL.


Assuntos
Reatores Biológicos , Melaço , Anaerobiose , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio , Metano
15.
Bioresour Technol ; 357: 127267, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35526715

RESUMO

The study examines the role of magnetite (1-150 mg/L) at the interface of Bacillus subtilis-electrode under poised-condition (-0.2 V) for product-formation and catalytic-conduct with the relative-gene-expression encoding lactate dehydrogenase (lctE), pyruvate dehydrogenase (pdhA), acetate kinase (ackA), pyruvate carboxylase (pycA), and NADH dehydrogenase (ndh). The magnetite load of 25 mg/L showed positive influence on acidogenesis resulting in H2 production of 264.7 mol/mL and fatty acids synthesis of 3.6 g/L. Additionally, this condition showed higher succinic acid productivity (2.8 g/L) which correlates with the upregulated pycA gene and fumarate to succinate redox peak. With 10 mg/L loading, production of higher acetic acid (3.1 g/L) along with H2 (181.6 mol/mL) was depicted wherein upregulation of pdhA, ackA and ndh genes was observed. In absence of magnetite, lctE gene was upregulated which resulted higher lactate production. The findings suggest that the mutual-interactions between magnetite-active sites of specific enzymes enhances the biocatalytic activity triggering product-formation.


Assuntos
Bacillus subtilis , Óxido Ferroso-Férrico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Óxido Ferroso-Férrico/metabolismo , Piruvato Carboxilase/metabolismo , Ácido Succínico/metabolismo
16.
Chemosphere ; 302: 134755, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35490753

RESUMO

The production of volatile fatty acids (VFAs) and biohydrogen (bio-H2) from food waste (FW) by acidogenic process is one of the promising strategies. The present study was performed to evaluate the role of initial (phase I) and intermittent pH (phase II) control strategies utilising combination of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) as buffering/neutralizing agents on VFAs and bio-H2 production from FW. The study was carried out in two bioreactor configurations (biofilm (UAFBB) and a suspended mode bioreactor (UASB)). Intermittent pH adjustment (phase II) increased hydrolysis and FW acidification compared to the initially adjusted pH (phase I), but had a detrimental influence on bio-H2 generation in both the studied bioreactor configurations. Combining NaOH and Na2CO3 resulted in higher buffering capacity and VFA production. The studied parameters in UAFBB aided in higher VFA (14.05 g/L; 48 h of cycle operation) and bio-H2 (56%; 12 h of cycle operation) production during phase II and phase I operation, respectively. Overall, the results showed a synergy between the examined parameters, resulting in increased VFA production from FW.


Assuntos
Alimentos , Eliminação de Resíduos , Ácidos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Hidróxido de Sódio
17.
Bioresour Technol ; 354: 127135, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405214

RESUMO

Polyhydroxybutyrates (PHBs) are naturally occurring biopolymeric compounds that accumulate in a variety of microorganisms, including microalgae as energy and carbon storage sources. The present study was designed to evaluate nature-based PHB production using microalgae (Chlorella sorokiniana SVMIICT8) in biphasic (growth (GP) and stress phase (SP)) nutritional mode of cultivation. Microalgal PHB accumulation was driven by nutrient constraint, with a maximal production of 29.5% of PHB from 0.94 gm L-1 of biomass. Fluorescence microscopy revealed PHB granules in the cell cytoplasm, while NMR (1H and 13C), XRD and TGA analysis confirmed the structure. The biopolymer obtained was homopolymer of PHB with carbonyl (C=O) stretch of the aliphatic ester moiety. In GC-MS analysis, major peak representing butyric acid methyl ester also confirmed the PHB. Chlorophyll a fluorescence transients inferred through OJIP, exhibited significant variation in photosynthetic process during growth and nutrient limiting conditions. Mining of bio-based products from microalgae cultivation embrace nature-based approach addressing climate change and sustainability inclusively.


Assuntos
Chlorella , Microalgas , Biomassa , Clorofila A , Ésteres , Nutrientes
18.
Bioresour Technol ; 354: 127146, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421562

RESUMO

Yeast lipids from low-cost renewable feedstock are valuable resources for oleochemicals thus enabling circular chemistry. Current study focuses on lipid and volatile fatty acid (VFA) production through dual-stage fermentation of spentwash in a biorefinery framework with Trichosporon cutaneum (Tc) and Yarrowia lipolytica (Yl). During cell proliferation phase, Tc and Yl accumulated 2.9 and 2.5 g/L of dry biomass respectively in acid-hydrolysed spentwash (AHSW) and produced 16 and 5.5 g/L of total VFA respectively. Lipid yields (29.8%) and lipid titres (0.89 g/L) were higher in Tc/AHSW, when compared to Yl indicating the efficacy of Tc in spentwash bioremediation. Lipid accumulation was enhanced to 35% in Tc/AHSW, in presence of 0.05% NH4Cl due to oxidative stress of ammonium ions. Analysis of fatty acid composition revealed the presence of higher oleic acid, which is ideal for biodiesel production. The results demonstrate a sustainable biorefinery model for bioremediation of spentwash and its value addition.


Assuntos
Basidiomycota , Trichosporon , Yarrowia , Ácidos , Biomassa , Ácidos Graxos
19.
Bioresour Technol ; 351: 126937, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248708

RESUMO

Addressing the carbon emissions through microbial mediated fermentation is an emerging interest. Custom designed and fabricated gas fermentation (GF) systems were evaluated to optimize the headspace pressure, pH (6.5, 7.5, and 8.5), fermentation time, and substrate concentration by employing enriched homoacetogenic chemolithoautotrophs in non-genetic approach. Headspace pressure showed marked influence on the metabolic conversion of inorganic carbon to acetic and butyric acids with 26% higher productivity than the control (atmospheric pressure). Maximum volatile fatty acid (VFA) yield of 3.7 g/L was observed at alkaline pH (8.5) under 2 bar pressure at carbon load of 10 g/L, 96 h). Acetic (3.0 g/L) and butyric (0.7 g/L) acids were the major products upon conversion of 85% of the inorganic substrate. A better in-situ buffering (ß = 0.048) at pH 8.5 along with higher reductive current (RCC: -4.4 mA) depicted better performance of GF towards CO2 reduction.


Assuntos
Dióxido de Carbono , Ácidos Graxos , Reatores Biológicos , Carbono , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Tempo de Reação
20.
Rev Environ Sci Biotechnol ; 21(1): 169-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103051

RESUMO

Micro/nanoplastics (MP/NPs) are emerging global pollutants that garnered enormous attention due to their potential threat to the ecosystem in virtue of their persistence and accumulation. Notably, United Nations Environment Programme (UNEP) yearbook in 2014 proposed MPs as one among ten emergent issues that the Earth is facing today. MP/NPs can be found in most regularly used products (primary microplastics) or formed by the fragmentation of bigger plastics (secondary microplastics) and are inextricably discharged into the environment by terrestrial and land-based sources, particularly runoff. They are non-degradable, biologically incompatible, and their presence in the air, soil, water, and food can induce ecotoxicological issues and also a menace to the environment. Due to micro size and diverse chemical nature, MP/NPs easily infiltrate wastewater treatment processes. This communication reviews the current understanding of MP/NPs occurrence, mobility, aggregation behavior, and degradation/assimilation in terrestrial, aquatic (fresh & marine), atmospheric depositions, wetlands and trophic food chain. This communication provide current perspectives and understanding on MP/NPs concerning (1) Source, occurrence, distribution, and properties (2) Impact on the ecosystem and its services, (3) Techniques in detection and identification and (4) Strategies to manage and mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA