Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 8: 686412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095234

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.

2.
J Biol Chem ; 295(21): 7362-7375, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32299909

RESUMO

NAD+ is an essential metabolite participating in cellular biochemical processes and signaling. The regulation and interconnection among multiple NAD+ biosynthesis pathways are incompletely understood. Yeast (Saccharomyces cerevisiae) cells lacking the N-terminal (Nt) protein acetyltransferase complex NatB exhibit an approximate 50% reduction in NAD+ levels and aberrant metabolism of NAD+ precursors, changes that are associated with a decrease in nicotinamide mononucleotide adenylyltransferase (Nmnat) protein levels. Here, we show that this decrease in NAD+ and Nmnat protein levels is specifically due to the absence of Nt-acetylation of Nmnat (Nma1 and Nma2) proteins and not of other NatB substrates. Nt-acetylation critically regulates protein degradation by the N-end rule pathways, suggesting that the absence of Nt-acetylation may alter Nmnat protein stability. Interestingly, the rate of protein turnover (t½) of non-Nt-acetylated Nmnats did not significantly differ from those of Nt-acetylated Nmnats. Accordingly, deletion or depletion of the N-end rule pathway ubiquitin E3 ligases in NatB mutants did not restore NAD+ levels. Next, we examined whether the status of Nt-acetylation would affect the translation of Nmnats, finding that the absence of Nt-acetylation does not significantly alter the polysome formation rate on Nmnat mRNAs. However, we observed that NatB mutants have significantly reduced Nmnat protein maturation. Our findings indicate that the reduced Nmnat levels in NatB mutants are mainly due to inefficient protein maturation. Nmnat activities are essential for all NAD+ biosynthesis routes, and understanding the regulation of Nmnat protein homeostasis may improve our understanding of the molecular basis and regulation of NAD+ metabolism.


Assuntos
Acetiltransferases/metabolismo , NAD/biossíntese , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Biossíntese de Proteínas , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , NAD/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Biomolecules ; 10(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092906

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite involved in various cellular processes. The cellular NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human. NAD+ metabolism is an emerging therapeutic target for several human disorders including diabetes, cancer, and neuron degeneration. Factors regulating NAD+ homeostasis have remained incompletely understood due to the dynamic nature and complexity of NAD+ metabolism. Recent studies using the genetically tractable budding yeast Saccharomyces cerevisiae have identified novel NAD+ homeostasis factors. These findings help provide a molecular basis for how may NAD+ and NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function. Here we summarize major NAD+ biosynthesis pathways, selected cellular processes that closely connect with and contribute to NAD+ homeostasis, and regulation of NAD+ metabolism by nutrient-sensing signaling pathways. We also extend the discussions to include possible implications of NAD+ homeostasis factors in human disorders. Understanding the cross-regulation and interconnections of NAD+ precursors and associated cellular pathways will help elucidate the mechanisms of the complex regulation of NAD+ homeostasis. These studies may also contribute to the development of effective NAD+-based therapeutic strategies specific for different types of NAD+ deficiency related disorders.


Assuntos
NAD/metabolismo , Leveduras/metabolismo , Animais , Proteínas Fúngicas/metabolismo , Homeostase , Humanos , NADP/metabolismo , Neoplasias/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 294(14): 5562-5575, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760525

RESUMO

NADH (NAD+) is an essential metabolite involved in various cellular biochemical processes. The regulation of NAD+ metabolism is incompletely understood. Here, using budding yeast (Saccharomyces cerevisiae), we established an NAD+ intermediate-specific genetic system to identify factors that regulate the de novo branch of NAD+ biosynthesis. We found that a mutant strain (mac1Δ) lacking Mac1, a copper-sensing transcription factor that activates copper transport genes during copper deprivation, exhibits increases in quinolinic acid (QA) production and NAD+ levels. Similar phenotypes were also observed in the hst1Δ strain, deficient in the NAD+-dependent histone deacetylase Hst1, which inhibits de novo NAD+ synthesis by repressing BNA gene expression when NAD+ is abundant. Interestingly, the mac1Δ and hst1Δ mutants shared a similar NAD+ metabolism-related gene expression profile, and deleting either MAC1 or HST1 de-repressed the BNA genes. ChIP experiments with the BNA2 promoter indicated that Mac1 works with Hst1-containing repressor complexes to silence BNA expression. The connection of Mac1 and BNA expression suggested that copper stress affects de novo NAD+ synthesis, and we show that copper stress induces both BNA expression and QA production. Moreover, nicotinic acid inhibited de novo NAD+ synthesis through Hst1-mediated BNA repression, hindered the reuptake of extracellular QA, and thereby reduced de novo NAD+ synthesis. In summary, we have identified and characterized novel NAD+ homeostasis factors. These findings will expand our understanding of the molecular basis and regulation of NAD+ metabolism.


Assuntos
NAD/biossíntese , Niacina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cobre/metabolismo , Camundongos , NAD/genética , Niacina/genética , Proteínas Nucleares/genética , Ácido Quinolínico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Fatores de Transcrição/genética
5.
Nature ; 557(7703): 123-126, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695868

RESUMO

Alternative complex III (ACIII) is a key component of the respiratory and/or photosynthetic electron transport chains of many bacteria1-3. Like complex III (also known as the bc1 complex), ACIII catalyses the oxidation of membrane-bound quinol and the reduction of cytochrome c or an equivalent electron carrier. However, the two complexes have no structural similarity4-7. Although ACIII has eluded structural characterization, several of its subunits are known to be homologous to members of the complex iron-sulfur molybdoenzyme (CISM) superfamily 8 , including the proton pump polysulfide reductase9,10. We isolated the ACIII from Flavobacterium johnsoniae with native lipids using styrene maleic acid copolymer11-14, both as an independent enzyme and as a functional 1:1 supercomplex with an aa3-type cytochrome c oxidase (cyt aa3). We determined the structure of ACIII to 3.4 Å resolution by cryo-electron microscopy and constructed an atomic model for its six subunits. The structure, which contains a [3Fe-4S] cluster, a [4Fe-4S] cluster and six haem c units, shows that ACIII uses known elements from other electron transport complexes arranged in a previously unknown manner. Modelling of the cyt aa3 component of the supercomplex revealed that it is structurally modified to facilitate association with ACIII, illustrating the importance of the supercomplex in this electron transport chain. The structure also resolves two of the subunits of ACIII that are anchored to the lipid bilayer with N-terminal triacylated cysteine residues, an important post-translational modification found in numerous prokaryotic membrane proteins that has not previously been observed structurally in a lipid bilayer.


Assuntos
Microscopia Crioeletrônica , Grupo dos Citocromos c/química , Grupo dos Citocromos c/ultraestrutura , Citocromos a3/química , Citocromos a3/ultraestrutura , Citocromos a/química , Citocromos a/ultraestrutura , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Flavobacterium/enzimologia , Cisteína/química , Cisteína/metabolismo , Grupo dos Citocromos c/metabolismo , Citocromos a/metabolismo , Citocromos a3/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/análogos & derivados , Heme/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-29408430

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

7.
Proc Natl Acad Sci U S A ; 110(31): 12613-8, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858452

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471-480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca(2+), a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR.


Assuntos
Proteínas de Bactérias/química , Oxirredutases/química , Subunidades Proteicas/química , Thermus thermophilus/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/química , Cálcio/metabolismo , Heme/química , Heme/genética , Heme/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Thermus thermophilus/genética
8.
Biol Chem ; 394(5): 667-76, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23370906

RESUMO

Type 2 NADH dehydrogenase (NDH-2) is a single-subunit membrane-associated flavoenzyme that is part of the respiratory chain of many prokaryotes. The enzyme catalyzes the electron transfer from NADH to quinone but is not directly coupled to the generation of a proton motive force. The purpose of the current work is to compare two different NDH-2s that are encoded in strains of Thermus thermophilus. The aerobic T. thermophilus HB27 strain expresses one NDH-2 that has been previously isolated and characterized. In this work it is shown that a gene, which is misannotated as an NADH oxidase, encodes this enzyme. Unlike HB27, strain NAR1 of T. thermophilus is capable of partial denitrification, and in addition its genome contains the nrcN gene that encodes a second putative NDH-2. Of particular interest is the fact that nrcN is part of an operon (nrcDEFN) that is proposed to encode a protein complex specifically required for nitrate reduction. In this work, the nrcN gene has the activity expected of a NDH-2, and functions independently of other components of the putative Nrc complex. The biochemical properties of the two NDH-2 enzymes are compared. Efforts to demonstrate that NrcN is part of a multiprotein complex were not successful. However, the NrcE protein was expressed in Escherichia coli and shown to be a membrane-bound protein containing heme B.


Assuntos
NADH Desidrogenase/metabolismo , Thermus thermophilus/metabolismo , Sequência de Aminoácidos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Expressão Gênica , Dados de Sequência Molecular , NADH Desidrogenase/genética , Nitratos/metabolismo , Oxirredução , Análise Espectral , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA