Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047133

RESUMO

Inflammatory bowel disease, comprising Crohn's disease (CD) and ulcerative colitis (UC), is often debilitating. The disease etiology is multifactorial, involving genetic susceptibility, microbial dysregulation, abnormal immune activation, and environmental factors. Currently, available drug therapies are associated with adverse effects when used long-term. Therefore, the search for new drug candidates to treat IBD is imperative. The peroxisome proliferator-activated receptor-γ (PPARγ) is highly expressed in the colon. PPARγ plays a vital role in regulating colonic inflammation. 1,8-cineole, also known as eucalyptol, is a monoterpene oxide present in various aromatic plants which possess potent anti-inflammatory activity. Molecular docking and dynamics studies revealed that 1,8-cineole binds to PPARγ and if it were an agonist, that would explain the anti-inflammatory effects of 1,8-cineole. Therefore, we investigated the role of 1,8-cineole in colonic inflammation, using both in vivo and in vitro experimental approaches. Dextran sodium sulfate (DSS)-induced colitis was used as the in vivo model, and tumor necrosis factor-α (TNFα)-stimulated HT-29 cells as the in vitro model. 1,8-cineole treatment significantly decreased the inflammatory response in DSS-induced colitis mice. 1,8-cineole treatment also increased nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus to induce potent antioxidant effects. 1,8-cineole also increased colonic PPARγ protein expression. Similarly, 1,8-cineole decreased proinflammatory chemokine production and increased PPARγ protein expression in TNFα-stimulated HT-29 cells. 1,8-cineole also increased PPARγ promoter activity time-dependently. Because of its potent anti-inflammatory effects, 1,8-cineole may be valuable in treating IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana , Eucaliptol/farmacologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049744

RESUMO

Inflammation of the GI tract leads to compromised epithelial barrier integrity, which increases intestine permeability. A compromised intestinal barrier is a critical event that leads to microbe entry and promotes inflammatory responses. Inflammatory bowel diseases that comprise Crohn's disease (CD) and ulcerative colitis (UC) show an increase in intestinal permeability. Nerolidol (NED), a naturally occurring sesquiterpene alcohol, has potent anti-inflammatory properties in preclinical models of colon inflammation. In this study, we investigated the effect of NED on MAPKs, NF-κB signaling pathways, and intestine epithelial tight junction physiology using in vivo and in vitro models. The effect of NED on proinflammatory cytokine release and MAPK and NF-κB signaling pathways were evaluated using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. Subsequently, the role of NED on MAPKs, NF-κB signaling, and the intestine tight junction integrity were assessed using DSS-induced colitis and LPS-stimulated Caco-2 cell culture models. Our result indicates that NED pre-treatment significantly inhibited proinflammatory cytokine release, expression of proteins involved in MAP kinase, and NF-κB signaling pathways in LPS-stimulated RAW macrophages and DSS-induced colitis. Furthermore, NED treatment significantly decreased FITC-dextran permeability in DSS-induced colitis. NED treatment enhanced tight junction protein expression (claudin-1, 3, 7, and occludin). Time-dependent increases in transepithelial electrical resistance (TEER) measurements reflect the formation of healthy tight junctions in the Caco-2 monolayer. LPS-stimulated Caco-2 showed a significant decrease in TEER. However, NED pre-treatment significantly prevented the fall in TEER measurements, indicating its protective role. In conclusion, NED significantly decreased MAPK and NF-κB signaling pathways and decreased tight junction permeability by enhancing epithelial tight junction protein expression.


Assuntos
Colite , Sesquiterpenos , Humanos , NF-kappa B/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sesquiterpenos/farmacologia , Proteínas de Junções Íntimas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos
3.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557879

RESUMO

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors. The current clinical treatment for IBD mainly includes steroids, biological agents and need-based surgery, based on the severity of the disease. Current drug therapy is often associated with adverse effects, which limits its use. Therefore, it necessitates the search for new drug candidates. In this pursuit, phytochemicals take the lead in the search for drug candidates to benefit from IBD treatment. ß-myrcene is a natural phytochemical compound present in various plant species which possesses potent anti-inflammatory activity. Here we investigated the role of ß-myrcene on colon inflammation to explore its molecular targets. We used 2% DSS colitis and TNF-α challenged HT-29 adenocarcinoma cells as in vivo and in vitro models. Our result indicated that the administration of ß-myrcene in dextran sodium sulfate (DSS)-treated mice restored colon length, decreased disease activity index (DAI), myeloperoxidase (MPO) enzyme activity and suppressed proinflammatory mediators. ß-myrcene administration suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways to limit inflammation. ß-myrcene also suppressed mRNA expression of proinflammatory chemokines in tumor necrosis factor-α (TNF-α) challenged HT-29 adenocarcinoma cells. In conclusion, ß-myrcene administration suppresses colon inflammation by inhibiting MAP kinases and NF-κB pathways.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Colo/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
4.
PPAR Res ; 2022: 5498115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465355

RESUMO

The incidence and prevalence of inflammatory bowel disease (IBD, Crohn's disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects. Therefore, the development of new drugs for IBD treatment is an important area of investigation. Here, we investigated the anti-inflammatory effects of α-bisabolol, a naturally occurring monocyclic sesquiterpene alcohol present in many aromatic plants, in colonic inflammation. To address this, we used molecular docking and dynamic studies to understand how α-bisabolol interacts with PPAR-γ, which is highly expressed in the colonic epithelium: in vivo (mice) and in vitro (RAW264.7 macrophages and HT-29 colonic adenocarcinoma cells) models. The molecular docking and dynamic analysis revealed that α-bisabolol interacts with PPAR-γ, a nuclear receptor protein that is highly expressed in the colon epithelium. Treatment with α-bisabolol in DSS-administered mice significantly reduced Disease Activity Index (DAI), myeloperoxidase (MPO) activity, and colonic length and protected the microarchitecture of the colon. α-Bisabolol treatment also reduced the expression of proinflammatory cytokines (IL-6, IL1ß, TNF-α, and IL-17A) at the protein and mRNA levels. The expression of COX-2 and iNOS inflammatory mediators were reduced along with tissue nitrite levels. Furthermore, α-bisabolol decreased the phosphorylation of activated mitogen-activated protein kinase (MAPK) signaling and nuclear factor kappa B (NFκB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. However, the PPAR-α and ß/δ expression was not altered, indicating α-bisabolol is a specific stimulator of PPAR-γ. α-Bisabolol also increased the PPAR-γ transcription factor expression but not PPAR-α and ß/δ in pretreated in LPS-stimulated RAW264.7 macrophages. α-Bisabolol significantly decreased the expression of proinflammatory chemokines (CXCL-1 and IL-8) mRNA in HT-29 cells treated with TNF-α and HT-29 PPAR-γ promoter activity. These results demonstrate that α-bisabolol mitigates colonic inflammation by inhibiting MAPK signaling and stimulating PPAR-γ expression.

5.
Front Microbiol ; 12: 748890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917044

RESUMO

The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.

6.
Nutrients ; 13(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920708

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Benzoquinonas/farmacologia , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
7.
Nutrients ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650602

RESUMO

Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1ß, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.


Assuntos
Anti-Inflamatórios , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacologia , Fitoterapia , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Administração Oral , Animais , Antioxidantes/metabolismo , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Neutrófilos , Peroxidase/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Sesquiterpenos/isolamento & purificação
8.
Heliyon ; 6(4): e03797, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322744

RESUMO

The physiological role of prolactin (PRL) in the heart, and in particular the diabetic heart, are largely unknown. The effects of PRL on ventricular myocyte shortening and Ca2+ transport in the streptozotocin (STZ) - induced diabetic and in age-matched control rats were investigated. PRL receptor protein, myocyte shortening, intracellular [Ca2+], L-type Ca2+ current were measured by Western blot, cell imaging, fluorescence photometry and whole-cell patch-clamp techniques, respectively. Compared to normal Tyrode solution (NT), PRL (50 ng/ml) significantly (p < 0.05) increased the amplitude of shortening in myocytes from control (7.43 ± 0.38 vs. 9.68 ± 0.46 %) and diabetic (6.57 ± 0.24 vs. 8.91 ± 0.44 %) heart (n = 44-49 cells). Compared to NT, PRL (50 ng/ml) significantly increased the amplitude of Ca2+ transients in myocytes from control (0.084 ± 0.004 vs. 0.115 ± 0.007 Fura-2 ratio units) and diabetic (0.087 ± 0.007 vs. 0.112 ± 0.006 Fura-2 ratio units) heart (n = 36-50 cells). PRL did not significantly alter the amplitude of caffeine-evoked Ca2+ transients however, PRL significantly increased the fractional release of Ca2+ in myocytes from control (21 %) and diabetic (14 %) and heart. The rate of Ca2+ transient recovery following PRL treatment was significantly increased in myocytes from diabetic and control heart. Amplitude of L-type Ca2+ current was not significantly altered by diabetes or by PRL. PRL increased the amplitude of shortening and Ca2+ transients in myocytes from control and diabetic heart. Increased fractional release of sarcoplasmic reticulum Ca2+ may partly underlie the positive inotropic effects of PRL in ventricular myocytes from control and STZ-induced diabetic rat.

9.
Phytother Res ; 34(7): 1530-1549, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32009281

RESUMO

Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , PPAR gama/metabolismo , Anti-Inflamatórios/farmacologia , Humanos , Doenças Inflamatórias Intestinais/patologia
10.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486484

RESUMO

Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Compostos Fitoquímicos/uso terapêutico , Animais , Glutationa/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos
11.
Sci Rep ; 8(1): 7554, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748643

RESUMO

A correction to this article has been published and is linked from the HTML and PDF version of this paper. The error has been fixed in the paper.

12.
J Biochem Mol Toxicol ; 32(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29214688

RESUMO

In this study, the hepatoprotective and anti-fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl4 )-induced liver fibrosis in mice. CCl4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase-1 expression, antioxidant defenses, and accumulation of 4-hydroxynonenal and 3-nitrotyrosine. Furthermore, CCl4 administration evoked profound expression of pro-inflammatory cytokine expressions such as tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-1ß in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl4 -treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP-ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl4 -administered animals. However, NTK treatment mitigated CCl4 -induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti-fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Sesquiterpenos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Intoxicação por Tetracloreto de Carbono/fisiopatologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Hepatite/etiologia , Hepatite/metabolismo , Hepatite/patologia , Hepatite/prevenção & controle , Injeções Intraperitoneais , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Nitrosativo/efeitos dos fármacos , Sesquiterpenos Policíclicos , Substâncias Protetoras/administração & dosagem
13.
Biomed Pharmacother ; 93: 1083-1097, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28738532

RESUMO

Cisplatin (CP) is a potent and widely used chemotherapeutic agent. However, the clinical benefits of CP are compromised because it elicits nephrotoxicity and ototoxicity. In this study, we investigated the nephroprotective effects of the phytochemical genipin (GP) isolated from the gardenia (Gardenia jasminoides) fruit, using a murine model of CP-induced nephropathy. GP pretreatment attenuated the CP-induced renal tissue injury by diminishing the serum blood urea nitrogen, creatinine, and cystatin C levels, as well as those of kidney injury molecule-1. In addition, GP attenuated the CP-induced oxidative/nitrative stress by suppressing the activation of NADPH oxidase, augmenting the endogenous antioxidant defense system, and diminishing the accumulation of 4-hydroxynonenal and 3-nitrotyrosine in renal tissues. Furthermore, reduced levels of proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1 beta indicated that CP-induced renal inflammation was mitigated upon the treatment with GP. GP also attenuated the CP-induced activation of mitogen-activated protein kinases, excessive activities of caspase-3/7 and poly(ADP-ribose) polymerase, DNA fragmentation, and apoptosis. When administered 12h after the onset of kidney injury, GP showed a therapeutic effect by ameliorating CP-induced nephrotoxicity. Moreover, GP synergistically enhanced the CP-induced cell death of T24 human bladder cancer cells. Collectively, our data indicate that GP attenuated the CP-induced renal tissue injury by abrogating oxidative/nitrative stress and inflammation and by blocking cell death pathways, thereby improving the renal function. Thus, our results suggest that the use of GP may be a promising new protective strategy against cisplatin-induced nephrotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Inflamação/tratamento farmacológico , Iridoides/farmacologia , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Aldeídos/metabolismo , Animais , Antioxidantes/metabolismo , Nitrogênio da Ureia Sanguínea , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Creatinina/metabolismo , Cistatina C/metabolismo , Citocinas/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Inflamação/metabolismo , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
14.
Sci Rep ; 7(1): 5868, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724903

RESUMO

Research on toxin-antitoxin loci (TA loci) is gaining impetus due to their ubiquitous presence in bacterial genomes and their observed roles in stress survival, persistence and drug tolerance. The present study investigates the expression profile of all the seventy-nine TA loci found in Mycobacterium tuberculosis. The bacterium was subjected to multiple stress conditions to identify key players of cellular stress response and elucidate a TA-coexpression network. This study provides direct experimental evidence for transcriptional activation of each of the seventy-nine TA loci following mycobacterial exposure to growth-limiting environments clearly establishing TA loci as stress-responsive modules in M. tuberculosis. TA locus activation was found to be stress-specific with multiple loci activated in a duration-based response to a particular stress. Conditions resulting in arrest of cellular translation led to greater up-regulation of TA genes suggesting that TA loci have a primary role in arresting translation in the cell. Our study identifed higBA2 and vapBC46 as key loci that were activated in all the conditions tested. Besides, relBE1, higBA3, vapBC35, vapBC22 and higBA1 were also upregulated in multpile stresses. Certain TA modules exhibited co-activation across multiple conditions suggestive of a common regulatory mechanism.


Assuntos
Redes Reguladoras de Genes , Loci Gênicos , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/genética , Estresse Fisiológico/genética , Sistemas Toxina-Antitoxina/genética , Antituberculosos/farmacologia , Análise por Conglomerados , Endonucleases/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Hidrolases/genética , Estresse Fisiológico/efeitos dos fármacos , Sistemas Toxina-Antitoxina/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
15.
Oxid Med Cell Longev ; 2016: 4320374, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774117

RESUMO

Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage.


Assuntos
Cisplatino/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Fitoterapia , Animais , Humanos , Compostos Fitoquímicos/farmacologia
16.
J Microbiol Methods ; 97: 34-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24365110

RESUMO

Microarrays have allowed gene expression profiling to progress from the gene level to the genome level, and oligonucleotide microarrays have become the platform of choice for large-scale, targeted gene expression studies. cDNA arrays and spotted oligonucleotide arrays have gradually given way to in situ synthesized oligonucleotide-based DNA microarrays for whole-genome expression profiling. With the identification of new coding and regulatory sequences, it is imperative that microarrays be updated to enable more complete expression profiling of genomes. We report here a new in situ synthesized oligonucleotide-based microarray platform for Mycobacterium tuberculosis that has been updated for the latest genome information and incorporates hitherto unannotated genes with described biological functions. This microarray has greater coverage of mycobacterial genes than any other array reported to date. We have also evaluated different labeled-target preparation methods and hybridization conditions for this new microarray to obtain high quality data and reproducible results. The new design has been rigorously validated for its specificity and performance using samples isolated from mycobacteria grown under different environment conditions. Further, the quality of the generated data has been compared with published data and is superior to that obtained using spotted oligonucleotide microarrays.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Análise de Sequência com Séries de Oligonucleotídeos/normas , Análise de Componente Principal , Reprodutibilidade dos Testes
17.
J Microbiol Methods ; 93(3): 198-202, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23566823

RESUMO

We describe a robust method for the isolation of pure, intact RNA suitable for transcriptome studies from mycobacteria with consistent yields of 1 µg to 3 µg total RNA per 10(7) cells. The method reduces the use of hazardous chemicals and incorporates protocols for efficient removal of gDNA and rRNA.


Assuntos
Técnicas Bacteriológicas/métodos , Biologia Molecular/métodos , Mycobacterium tuberculosis/genética , RNA Bacteriano/isolamento & purificação , Manejo de Espécimes/métodos , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA