Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1286824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660375

RESUMO

Adaptation in an environment can either be beneficial, neutral or disadvantageous in another. To test the genetic basis of pleiotropic behaviour, we evolved six lines of E. coli independently in environments where glucose and galactose were the sole carbon sources, for 300 generations. All six lines in each environment exhibit convergent adaptation in the environment in which they were evolved. However, pleiotropic behaviour was observed in several environmental contexts, including other carbon environments. Genome sequencing reveals that mutations in global regulators rpoB and rpoC cause this pleiotropy. We report three new alleles of the rpoB gene, and one new allele of the rpoC gene. The novel rpoB alleles confer resistance to Rifampicin, and alter motility. Our results show how single nucleotide changes in the process of adaptation in minimal media can lead to wide-scale pleiotropy, resulting in changes in traits that are not under direct selection.

2.
NPJ Syst Biol Appl ; 10(1): 6, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225420

RESUMO

The process of speciation generates biodiversity. According to the null model of speciation, barriers between populations arise in allopatry, where, prior to biology, geography imposes barriers to gene flow. On the other hand, sympatric speciation requires that the process of speciation happen in the absence of a geographical barrier, where the members of the population have no spatial, temporal barriers. Several attempts have been made to theoretically identify the conditions in which speciation can occur in sympatry. However, these efforts suffer from several limitations. We propose a model for sympatric speciation based on adaptation for resource utilization. We use a genetics-based model to investigate the relative roles of prezygotic and postzygotic barriers, from the context of ecological disruptive selection, sexual selection, and genetic architecture, in causing and maintaining sympatric speciation. Our results show that sexual selection that acts on secondary sexual traits does not play any role in the process of speciation in sympatry and that assortative mating based on an ecologically relevant trait forces the population to show an adaptive response. We also demonstrate that understanding the genetic architecture of the trait under ecological selection is very important and that it is not required for the strength of ecological disruptive selection to be very high in order for speciation to occur in sympatry. Our results provide an insight into the kind of scenarios in which sympatric speciation can be demonstrated in the lab.


Assuntos
Especiação Genética , Simpatria , Simpatria/genética , Fenótipo
3.
Microbiol Spectr ; 11(6): e0195023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787555

RESUMO

IMPORTANCE: A population diversifies into two or more species-such a process is known as speciation. In sexually reproducing microorganisms, which barriers arise first-pre-mating or post-mating? In this work, we quantify the relative strengths of these barriers and demonstrate that pre-mating barriers arise first in allopatrically evolving populations of yeast, Saccharomyces cerevisiae. These defects arise because of the altered kinetics of mating of the participating groups. Thus, our work provides an understanding of how adaptive changes can lead to diversification among microbial populations.


Assuntos
Reprodução , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética
4.
Front Microbiol ; 12: 796228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087497

RESUMO

Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA