Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4452, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488133

RESUMO

Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their terminal bouton number and activity. We term this compensation as cross-neuron plasticity, and in this study, we demonstrate that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required for cross-neuron plasticity. Overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. In addition, we find that functional cross-neuron plasticity can be induced at different developmental stages. Our work uncovers a role for Draper signaling in cross-neuron plasticity and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.


Assuntos
Drosophila , Neuroglia , Animais , Neurônios Motores , Morte Celular , Neurônios Eferentes
2.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090512

RESUMO

Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the cell death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their axon terminal size and activity. We termed this compensation as cross-neuron plasticity, and in this study, we demonstrated that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required in glial cells. Surprisingly, overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. Synaptic plasticity normally declines as animals age, but in our system, functional cross-neuron plasticity can be induced at different time points, whereas structural cross-neuron plasticity can only be induced at early stages. Our work uncovers a novel role for glial Draper signaling in cross-neuron plasticity that may enhance nervous system function during neurodegeneration and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.

3.
Elife ; 112022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305588

RESUMO

Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i.e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i.e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.


Assuntos
Condicionamento Operante , Drosophila , Animais , Condicionamento Operante/fisiologia , Drosophila/fisiologia , Larva/fisiologia , Drosophila melanogaster/fisiologia , Condicionamento Clássico/fisiologia
4.
Cell Rep ; 39(13): 110992, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767953

RESUMO

How the vast array of neuronal diversity is generated remains an unsolved problem. Here, we investigate how 29 morphologically distinct leg motoneurons are generated from a single stem cell in Drosophila. We identify 19 transcription factor (TF) codes expressed in immature motoneurons just before their morphological differentiation. Using genetic manipulations and a computational tool, we demonstrate that the TF codes are progressively established in immature motoneurons according to their birth order. Comparing RNA and protein expression patterns of multiple TFs reveals that post-transcriptional regulation plays an essential role in shaping these TF codes. Two RNA-binding proteins, Imp and Syp, expressed in opposing gradients in immature motoneurons, control the translation of multiple TFs. The varying sensitivity of TF mRNAs to the opposing gradients of Imp and Syp in immature motoneurons decrypts these gradients into distinct TF codes, establishing the connectome between motoneuron axons and their target muscles.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Neuron ; 109(1): 105-122.e7, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33120017

RESUMO

The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.


Assuntos
Conectoma/métodos , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Interneurônios/química , Rede Nervosa/química , Optogenética/métodos , Sinapses/química , Sinapses/genética
6.
Elife ; 92020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32490810

RESUMO

To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.


In the body, spindly nerve cells called motor neurons connect the brain to the muscles. Their role is to control movement, as they translate the electrical signals from the brain into instructions to the muscles. In humans, it takes over 150,000 motor neurons to control the movement of one leg; in contrast, fruit flies only need 50 neurons to operate a leg, despite also executing a variety of movements. Fruit flies are commonly used in laboratories to study an array of biological processes, yet little is known about how their motor neurons direct movements. In particular, it was unclear whether the same principles that control how muscles contract in mammals also applied in the tiny fruit fly. To begin investigating, Azevedo et al. mapped out the arrangement of motor neurons that control muscles in the fruit fly leg. As the leg moved, the activity of both the neurons and the muscles they controlled was recorded, as well as the force that had been generated. The experiments showed that each motor neuron controls a certain range of leg force and speed: some produced small, slow motion important for posture and dexterity, while others created large, fast movements essential to running or escape. In addition, the neurons activate in a particular order ­ cells that control slow movements fire first, and those that direct fast maneuvers later. These processes are also found in other organisms, but the difference is that flies have so few neurons, allowing scientists to reliably identify each motor neuron. Future experiments will therefore be able to test how flies recruit the right neurons to create specific movement sequences. Fruit flies are often used to research human illnesses that affect movement, such as motor neuron disease. A better understanding of the way their neural circuits coordinate the body could help reveal how these conditions emerge.


Assuntos
Drosophila/fisiologia , Neurônios Motores/fisiologia , Animais , Fenômenos Biomecânicos , Drosophila/química , Drosophila/genética , Eletromiografia , Neurônios Motores/química , Tíbia/fisiologia
7.
Curr Opin Neurobiol ; 56: 135-143, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826502

RESUMO

In order to generate complex motor outputs, the nervous system integrates multiple sources of sensory information that ultimately controls motor neurons to generate coordinated movements. The neural circuits that integrate higher order commands from the brain and generate motor outputs are located in the nerve cord of the central nervous system. Recently, genetic access to distinct functional subtypes that make up the Drosophila adult ventral nerve cord has significantly begun to advance our understanding of the structural organization and functions of the neural circuits coordinating motor outputs. Moreover, lineage-tracing and genetic intersection tools have been instrumental in deciphering the developmental mechanisms that generate and assemble the functional units of the adult nerve cord. Together, the Drosophila adult ventral nerve cord is emerging as a powerful system to understand the development and function of neural circuits that are responsible for coordinating complex motor outputs.


Assuntos
Encéfalo , Animais , Sistema Nervoso Central , Drosophila , Proteínas de Drosophila , Neurônios Motores
8.
Elife ; 82019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714901

RESUMO

For animals to perform coordinated movements requires the precise organization of neural circuits controlling motor function. Motor neurons (MNs), key components of these circuits, project their axons from the central nervous system and form precise terminal branching patterns at specific muscles. Focusing on the Drosophila leg neuromuscular system, we show that the stereotyped terminal branching of a subset of MNs is mediated by interacting transmembrane Ig superfamily proteins DIP-α and Dpr10, present in MNs and target muscles, respectively. The DIP-α/Dpr10 interaction is needed only after MN axons reach the vicinity of their muscle targets. Live imaging suggests that precise terminal branching patterns are gradually established by DIP-α/Dpr10-dependent interactions between fine axon filopodia and developing muscles. Further, different leg MNs depend on the DIP-α and Dpr10 interaction to varying degrees that correlate with the morphological complexity of the MNs and their muscle targets.


Assuntos
Proteínas de Drosophila/genética , Neurônios Motores/fisiologia , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Neurônios Motores/metabolismo , Neurônios Eferentes/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fatores de Transcrição/metabolismo
9.
J Vis Exp ; (140)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30451217

RESUMO

The majority of work on the neuronal specification has been carried out in genetically and physiologically tractable models such as C. elegans, Drosophila larvae, and fish, which all engage in undulatory movements (like crawling or swimming) as their primary mode of locomotion. However, a more sophisticated understanding of the individual motor neuron (MN) specification-at least in terms of informing disease therapies-demands an equally tractable system that better models the complex appendage-based locomotion schemes of vertebrates. The adult Drosophila locomotor system in charge of walking meets all of these criteria with ease, since in this model it is possible to study the specification of a small number of easily distinguished leg MNs (approximately 50 MNs per leg) both using a vast array of powerful genetic tools, and in the physiological context of an appendage-based locomotion scheme. Here we describe a protocol to visualize the leg muscle innervation in an adult fly.


Assuntos
Axônios/fisiologia , Drosophila/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Animais , Drosophila/citologia , Proteínas de Drosophila/genética , Extremidades/inervação , Locomoção/genética , Músculo Esquelético/inervação
10.
Neuron ; 86(4): 955-970, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25959734

RESUMO

How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.


Assuntos
Dendritos/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Dendritos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Homeodomínio/genética , Neurônios Motores/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA