Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 248(2): 347-367, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29736624

RESUMO

MAIN CONCLUSION: Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Lipídeos/análise , Folhas de Planta/metabolismo , Portulaca/genética , Portulaca/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Escherichia coli/genética , Ácidos Graxos/análise , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Microssomos/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo
2.
Plant Physiol ; 159(1): 95-104, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22434039

RESUMO

Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca(2+) inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.


Assuntos
Aciltransferases/metabolismo , Metabolismo dos Lipídeos , Fosfolipases A2/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aciltransferases/genética , Sequência de Aminoácidos , Arachis/efeitos dos fármacos , Arachis/genética , Arachis/metabolismo , Cálcio/metabolismo , Cloroplastos/metabolismo , Clonagem Molecular , Diglicerídeos/farmacologia , Genes de Plantas , Germinação , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Ácido Oleico/farmacologia , Fosfatidilcolinas/farmacologia , Fosfolipases A2/genética , Fosforilação , Proteínas de Plantas/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Mapeamento de Interação de Proteínas , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Serina/metabolismo , Especificidade por Substrato
3.
J Biol Chem ; 287(3): 1946-54, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128159

RESUMO

In plants, fatty oils are generally stored in spherical intracellular organelles referred to as oleosomes that are covered by proteins such as oleosin. Seeds with high oil content have more oleosin than those with low oil content. However, the exact role of oleosin in oil accumulation is thus far unclear. Here, we report the isolation of a catalytically active 14 S multiprotein complex capable of acylating monoacylglycerol from the microsomal membranes of developing peanut cotyledons. Microsomal membranes from immature peanut seeds were solubilized using 8 m urea and 10 mm CHAPS. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 27 proteins in the 14 S complex. The major proteins present in the 14 S complex are conarachin, the major allergen Ara h 1, and other seed storage proteins. We identified oleosin 3 as a part of the 14 S complex, which is capable of acylating monoacylglycerol. The recombinant OLE3 microsomes from Saccharomyces cerevisiae have been shown to have both a monoacylglycerol acyltransferase and a phospholipase A(2) activity. Overexpression of the oleosin 3 (OLE3) gene in S. cerevisiae resulted in an increased accumulation of diacylglycerols and triacylglycerols and decreased phospholipids. These findings provide a direct role for a structural protein (OLE3) in the biosynthesis and mobilization of plant oils.


Assuntos
Aciltransferases/metabolismo , Arachis/enzimologia , Microssomos/enzimologia , Complexos Multienzimáticos/metabolismo , Fosfolipases/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferases/genética , Arachis/genética , Complexos Multienzimáticos/genética , Fosfolipases/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA