Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(2): e652, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36757287

RESUMO

We recently described a set of four selectable and two counterselectable markers that provide resistance and sensitivity, respectively, against their corresponding drugs using the model organism Drosophila melanogaster. The four selectable markers provide animals with resistance against G418 sulfate, puromycin HCl, blasticidin S, or hygromycin B, whereas the two counterselection markers make animals sensitive to ganciclovir/acyclovir or 5-fluorocytosine. Unlike classical phenotypic markers, whether visual or fluorescent, which require extensive screening of progeny of a genetic cross for desired genotypes, resistance and sensitivity markers eliminate this laborious procedure by directly selecting for, or counterselecting against, the desired genotypes. We demonstrated the usefulness of these markers with three applications: 1) generating dual transgenic animals for binary overexpression (e.g., GAL4/UAS) analysis in a single step through the process of co-injection, followed by co-selection resulting in co-transgenesis; 2) obtaining balancer chromosomes that are both selectable and counterselectable to manipulate crossing schemes for, or against, the presence of the modified balancer chromosome; and 3) making both selectable and fluorescently tagged P[acman] BAC transgenic animals for gene expression and proteomic analysis. Here, we describe detailed procedures for how to use these drug-based selection and counterselection markers in the fruit fly D. melanogaster when making dual transgenic animals for binary overexpression as an example. Dual transgenesis integrates site-specifically into two sites in the genome in a single step, namely both components of the binary GAL4/UAS overexpression system, via a G418 sulfate-selectable GAL4 transactivator plasmid and a blasticidin S-selectable UAS responder plasmid. The process involves co-injecting the two plasmids, followed by co-selection using G418 sulfate and blasticidin S, resulting in co-transgenesis of the two plasmids in the fly genome. We demonstrate the functionality of the procedure based on the expression pattern obtained after dual transgenesis of the two plasmids. We provide protocols on how to prepare drugged fly food vials, determine the effective drug concentration for markers used during transgenic selection and counterselection strategies, and prepare and confirm plasmid DNA for microinjection, followed by the microinjection procedure itself and setting up crossing schemes to isolate desired progeny through selection and/or counterselection. These protocols can be easily adapted to any combination of the six selectable and counterselectable markers we described or any new marker that is resistant or sensitive to a novel drug. Protocols on how to build plasmids by synthetic-assembly DNA cloning or modify plasmids by serial recombineering to perform a plethora of selection, counterselection, or any other genetic strategies are presented in two accompanying Current Protocols articles. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparing drugged fly food vials for transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 2: Determining the effective drug concentration for resistance and sensitivity markers used during transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 3: Preparing and confirming plasmid DNA for microinjection to perform transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 4: Microinjecting plasmid DNA into fly embryos to perform transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 5: Crossing schemes to isolate desired progeny through transgenic selection and counterselection strategies using D. melanogaster.


Assuntos
Drosophila melanogaster , Proteômica , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Fluxo de Trabalho , DNA , Drosophila/genética
2.
Curr Protoc ; 3(2): e653, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36757602

RESUMO

We recently described a drug-based selectable and counterselectable genetic platform for the animal model system Drosophila melanogaster, consisting of four resistance and two sensitivity markers that allow direct selection for, or counterselection against, a desired genotype. This platform eliminates the need to identify modified progeny by traditional laborious screening using the dominant eye and body color markers, white+ and yellow+ , respectively. The four resistance markers permit selection of animals using G418 sulfate, puromycin HCl, blasticidin S, or hygromycin B, while the two sensitivity markers allow counterselection of animals against ganciclovir or acyclovir and 5-fluorocytosine. The six markers can be used alone or in combination to perform co-selection, combination selection, and counterselection, as well as co-counterselection. To make this novel selection and counterselection genetics platform easily accessible to and rapidly implementable by the scientific community, we used a synthetic assembly DNA cloning platform, GoldenBraid 2.0 (GB2.0). GB2.0 relies on two Type IIs restriction enzymes that are alternatingly used during successive cloning steps to make increasingly complex genetic constructs. Here we describe, as an example, how to perform synthetic assembly DNA cloning using GB2.0 to build such complex plasmids via the assembly of both components of the binary LexA/LexA-Op overexpression system, a G418 sulfate-selectable LexA transactivator plasmid, and a blasticidin S-selectable LexA-Op responder plasmid. We demonstrate the functionality of these plasmids by including the expression pattern obtained after co-injection, followed by co-selection using G418 sulfate and blasticidin S, resulting in co-transgenesis of both plasmids. Protocols are provided on how to obtain, adapt, and clone DNA parts for synthetic assembly cloning after de novo DNA synthesis or PCR amplification of desired DNA parts and how to assemble those DNA parts into multipartite transcription units, followed by how to further assemble multiple transcription units into genetic constructs of increasing complexity to perform multiplexed transgenic selection and counterselection, or any other genetic strategies using Drosophila melanogaster. The protocols we present can be easily adapted to incorporate any of the six selectable and counterselectable markers, or any other, markers, to generate plasmids of unmatched complexity for various genetic applications. A protocol on how to generate transgenic animals using these synthetically assembled plasmids is described in an accompanying Current Protocols article (Venken, Matinyan, Gonzalez, & Dierick, 2023). © 2023 Wiley Periodicals LLC. Basic Protocol 1: Obtaining and cloning a de novo-synthesized DNA part for synthetic assembly DNA cloning Basic Protocol 2: Obtaining and cloning a DNA part amplified by PCR from existing DNA resources for synthetic assembly DNA cloning Alternate Protocol: Obtaining, adapting, and cloning a DNA part amplified by PCR from existing DNA resources for synthetic assembly DNA cloning Basic Protocol 3: Synthetic assembly DNA cloning of individual DNA parts into a multipartite transcription unit Basic Protocol 4: Synthetic assembly DNA cloning of multiple transcription units into genetic constructs of increasing complexity.


Assuntos
DNA , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Clonagem Molecular , Animais Geneticamente Modificados/genética , Plasmídeos/genética
3.
Curr Protoc ; 3(2): e675, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36757632

RESUMO

Transgenes with genomic DNA fragments that encompass genes of interest are the gold standard for complementing null alleles in rescue experiments in the fruit fly Drosophila melanogaster. Of particular interest are genomic DNA clones available as bacterial artificial chromosomes (BACs) or fosmids from publicly available genomic DNA libraries. Genes contained within BAC and fosmid clones can be easily modified by recombineering cloning to insert peptide or protein tags to localize, visualize, or manipulate gene products, and to create point mutations or deletions for structure-function analysis of the inserted genes. However, since transgenesis efficiency is inversely correlated with transgene size, obtaining transgenic animals for increasingly larger BAC and fosmid clones requires increasingly laborious screening efforts using the transgenesis marker commonly used for these transgenes, the dominant eye color marker white+ . We recently described a drug-based selectable genetic platform for Drosophila melanogaster, which included four resistance markers that allow direct selection of transgenic animals, eliminating the need to identify transgenic progeny by laborious phenotypic screening. By integrating these resistance markers into BAC transgenes, we were able to isolate animals containing large transgenes by direct selection, avoiding laborious screening. Here we present procedures on how to upgrade BAC clones by serial recombineering cloning to build both selectable and tagged BAC transgenes, for selection transgenesis and functional gene analysis, respectively. We illustrate these procedures using a BAC clone encompassing the gene encoding the synaptic vesicle protein, cysteine string protein. We demonstrate that the modified BAC clone, serially recombineered with a selectable marker for selection transgenesis and an N-terminal green fluorescent protein tag for gene expression analysis, is functional by showing the expression pattern obtained after successful selection transgenesis. The protocols cover: (1) cloning and preparation of the recombineering templates needed for serial recombineering cloning to incorporate selectable markers and protein tags; (2) preparing electrocompetent cells needed to perform serial recombineering cloning; and (3) the serial recombineering workflow to generate both selectable and tagged genomic BAC reporter transgenes for selection transgenesis and functional gene analysis in Drosophila melanogaster. The protocols we describe can be easily adapted to incorporate any of four selectable markers, protein tags, or any other modification for structure-function analysis of the genes present within any of the BAC or fosmid clones. A protocol for generating transgenic animals using serially recombineered BAC clones is presented in an accompanying Current Protocols article (Venken, Matinyan, Gonzalez, & Dierick, 2023a). © 2023 Wiley Periodicals LLC. Basic Protocol 1: Cloning and preparation of recombineering templates used for serial recombineering cloning. Basic Protocol 2: Making electrocompetent cells of the bacterial strains used to perform serial recombineering cloning or induction of plasmid copy number. Basic Protocol 3: Serial recombineering cloning to generate both selectable and tagged genomic P[acman] BAC reporter transgenes for selection transgenesis and gene expression analysis in Drosophila melanogaster.


Assuntos
Drosophila melanogaster , Técnicas de Transferência de Genes , Animais , Drosophila melanogaster/genética , Animais Geneticamente Modificados , DNA , Drosophila/genética , Genômica , Clonagem Molecular , Células Clonais
4.
Methods Mol Biol ; 2524: 409-432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821490

RESUMO

Multiplex hextuple luciferase assaying allows monitoring the activity of five experimental pathways against one control at the same time. To perform multiplex hextuple luciferase assaying, six orthogonal luciferase reporter units are needed of which five are pathway-specific and one acts as a control for normalization. To ensure stoichiometric delivery of all six luciferase reporters in every transfected cell, synthetic assembly DNA cloning is used to stitch together all six luciferase reporter units into a single vector. Here, we provide a detailed three-step synthetic assembly DNA protocol to generate multiplex hextuple luciferase reporter plasmids for any five cellular signaling pathways of interest, against a control normalization pathway. A first protocol is provided on how to generate plasmids that contain novel transcription factor-binding motifs for specific transcription factors. A second protocol details on how to couple these novel transcription factor-binding motifs to one of five orthogonal luciferases to obtain specific luciferase reporters for cellular signaling pathways acting upstream of those transcription factor-binding motifs. Finally, a third protocol provides details on how to assemble orthogonal luciferase reporters for five cellular signaling pathways acting upstream of five unique transcription factor-binding motifs together with a control constitutive pathway luciferase reporter that will be used for normalization to obtain a final multiplex hextuple luciferase vector.


Assuntos
DNA , Fatores de Transcrição , Clonagem Molecular , DNA/genética , Genes Reporter , Luciferases/genética , Plasmídeos/genética , Fatores de Transcrição/metabolismo
5.
Methods Mol Biol ; 2524: 433-456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821491

RESUMO

We recently expanded the commonly used dual luciferase assaying method toward multiplex hextuple luciferase assaying, allowing monitoring the activity of five experimental pathways against one control at the same time. In doing so, while our expanded assay utilizes a total of six orthogonal luciferases instead of two, this assay, conveniently, still utilizes the well-established reagents and principles of the widely used dual luciferase assay. Three quenchable D-luciferin-consuming luciferases are measured after addition of D-Luciferin substrate, followed by quenching of their bioluminescence (BL) and the measurement of three coelenterazine (CTZ)-consuming luciferases after addition of CTZ substrate, all in the same vessel. Here, we provide detailed protocols on how to perform such multiplex hextuple luciferase assaying to monitor cellular signal processing upstream of five transcription factors and their corresponding transcription factor-binding motifs, using a constitutive promoter as normalization control. The first protocol is provided on how to perform cell culture in preparation toward genetic or pharmaceutical perturbations, as well as transfecting a multiplex hextuple luciferase reporter vector encoding all luciferase reporter units needed for multiplex hextuple luciferase assaying. The second protocol details on how to execute multiplex hextuple luciferase assaying using a microplate reader appropriately equipped to detect the different BLs emitted by all six luciferases. Finally, the third protocol provides details on analyzing, plotting, and interpreting the data obtained by the microplate reader.


Assuntos
Bioensaio , Fatores de Transcrição/genética , Luciferases/genética , Regiões Promotoras Genéticas , Ligação Proteica
6.
Nat Commun ; 13(1): 1952, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414140

RESUMO

In vitro derivation of pancreatic ß-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent ß-cells are still hindered by incomplete understanding of the microenvironment's role in ß-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits ß-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human ß-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during ß-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide ß-cells for translational applications.


Assuntos
Pâncreas , Via de Sinalização Wnt , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Humanos , MAP Quinase Quinase 4/metabolismo , Pâncreas/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
7.
Cell Rep ; 36(11): 109700, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525356

RESUMO

The power of Drosophila melanogaster as a model system relies on tractable germline genetic manipulations. Despite Drosophila's expansive genetics toolbox, such manipulations are still accomplished one change at a time and depend predominantly on phenotypic screening. We describe a drug-based genetic platform consisting of four selection and two counterselection markers, eliminating the need to screen for modified progeny. These markers work reliably individually or in combination to produce specific genetic outcomes. We demonstrate three example applications of multiplexed drug-based genetics by generating (1) transgenic animals, expressing both components of binary overexpression systems in a single transgenesis step; (2) dual selectable and counterselectable balancer chromosomes; and (3) selectable, fluorescently tagged P[acman] bacterial artificial chromosome (BAC) strains. We perform immunoprecipitation followed by proteomic analysis on one tagged BAC line, demonstrating our platform's applicability to biological discovery. Lastly, we provide a plasmid library resource to facilitate custom transgene design and technology transfer to other model systems.


Assuntos
Drosophila/genética , Técnicas Genéticas , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Drosophila/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Feminino , Ganciclovir/análogos & derivados , Ganciclovir/farmacologia , Gentamicinas/farmacologia , Masculino , Transgenes/genética
8.
STAR Protoc ; 2(3): 100783, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585147

RESUMO

We recently integrated into fly genetics a set of four selection and two counterselection markers and their corresponding drugs that can be used individually or in combination. These markers eliminate the need to visually screen progeny. Before using these markers in new genetic backgrounds, effective selection/counterselection concentrations should be established for each marker/drug combination. This protocol describes how to set up, perform, and analyze a drug titration curve to determine the effective selection/counterselection drug concentrations for their corresponding markers. For complete details on the use and execution of this protocol, please refer to Matinyan et al., 2021.


Assuntos
Drosophila melanogaster , Resistência a Medicamentos/genética , Engenharia Genética/métodos , Animais , Animais Geneticamente Modificados/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Marcadores Genéticos/genética , Masculino
9.
Genet Med ; 23(1): 59-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32884132

RESUMO

PURPOSE: To achieve the ultimate goal of personalized treatment of patients, accurate molecular diagnosis and precise interpretation of the impact of genetic variants on gene function is essential. With sequencing cost becoming increasingly affordable, the accurate distinguishing of benign from pathogenic variants becomes the major bottleneck. Although large normal population sequence databases have become a key resource in filtering benign variants, they are not effective at filtering extremely rare variants. METHODS: To address this challenge, we developed a novel statistical test by combining sequencing data from a patient cohort with a normal control population database. By comparing the expected and observed allele frequency in the patient cohort, variants that are likely benign can be identified. RESULTS: The performance of this new method is evaluated on both simulated and real data sets coupled with experimental validation. As a result, we demonstrate this new test is well powered to identify benign variants, and is particularly effective for variants with low frequency in the normal population. CONCLUSION: Overall, as a general test that can be applied to any type of variants in the context of all Mendelian diseases, our work provides a general framework for filtering benign variants with very low population allele frequency.


Assuntos
Bases de Dados Genéticas , Variação Genética , Alelos , Frequência do Gene , Humanos , Virulência
10.
Curr Protoc Mol Biol ; 131(1): e121, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32539183

RESUMO

High-throughput cell-based screening assays are valuable tools in the discovery of chemical probes and therapeutic agents. Such assays are designed to examine the effects of small compounds on targets, pathways, or phenotypes participating in normal and disease processes. While most cell-based assays measure single quantities, multiplexed assays seek to address these limitations by obtaining multiple simultaneous measurements. The signals from such measurements should be independently detectable and cover large dynamic ranges. Luciferases are good candidates for generation of such signals. They are genetically encoded, versatile, and cost-effective, and their output signals can be sensitively detected. We recently developed a multiplex luciferase assay that allows monitoring the activity of five experimental pathways against one control simultaneously. We used synthetic assembly cloning to assemble all six luciferase reporter units into a single vector over eight stitching rounds. Because all six reporters are on a single piece of DNA, a single vector ensures stoichiometric ratios of each transcriptional unit in each transfected cell, resulting in lower experimental variation. Our proof-of-concept multiplex hextuple luciferase assay was designed to simultaneously monitor the p53, TGF-ß, NF-κß, c-Myc, and MAPK/JNK signaling pathways. The same synthetic assembly cloning pipeline allows the stitching of numerous other cellular pathway luciferase reporters. Here we present an improved three-step synthetic assembly protocol to quickly and efficiently generate multiplex hextuple luciferase reporter plasmids for other signaling pathways of interest. This improved assembly protocol provides the opportunity to analyze any five desired pathways at once much more quickly. Protocols are provided on how to prepare DNA components and destination vector plasmids, design synthetic DNA, perform assembly cloning of new transcriptional reporter elements, implement multipartite synthetic assembly cloning of single-pathway luciferase reporters, and carry out one-step assembly of final multiplex hextuple luciferase vectors. We present protocols on how to perform multiplex hextuple luciferase in an accompanying Current Protocols in Molecular Biology article. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of DNA parts and destination vectors for synthetic assembly cloning Basic Protocol 2: DNA synthesis and assembly cloning of a typical transcriptional reporter element Alternate Protocol: DNA synthesis and assembly cloning of a challenging transcriptional reporter element Basic Protocol 3: Multipartite synthetic assembly cloning of individual pathway luciferase reporters Basic Protocol 4: One step assembly into final multiplex hextuple luciferase vectors Support Protocol: Generation of home-made chemocompetent E. coli DH10B-T1R cells.


Assuntos
Clonagem Molecular/métodos , Genes Reporter , Luciferases/genética , Plasmídeos/genética , Transdução de Sinais/genética , DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Transfecção/métodos
11.
Curr Protoc Mol Biol ; 131(1): e122, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32539239

RESUMO

Multiplex experimentation that can assay multiple cellular signaling pathways in the same cells requires orthogonal genetically encoded reporters that report over large dynamic ranges. Luciferases are cost-effective, versatile candidates whose output signals can be sensitively detected in a multiplex fashion. Commonly used dual luciferase reporter assays detect one luciferase that is coupled to a single cellular pathway and a second that is coupled to a control pathway for normalization purposes. We have expanded this approach to multiplex hextuple luciferase assays that can report on five cellular signaling pathways and one control, each of which is encoded by a unique luciferase. Light emission by the six luciferases can be distinguished by the use of two distinct substrates, each specific for three luciferases, followed by spectral decomposition of the light emitted by each of the three luciferase enzymes with bandpass filters. Here, we present detailed protocols on how to perform multiplex hextuple luciferase assaying to monitor pathway fluxes through transcriptional response elements for five specific signaling pathways (i.e., c-Myc, NF-κß, TGF-ß, p53, and MAPK/JNK) using the constitutive CMV promoter as normalization control. Protocols are provided for preparing reporter vector plasmids for multiplex reporter assaying, performing cell culture and multiplex luciferase reporter vector plasmid transfection, executing multiplex luciferase assays, and analyzing and interpreting data obtained by a plate reader appropriately equipped to detect the different luminescences. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of vectors for multiplex hextuple luciferase assaying Basic Protocol 2: Cell culture work for multiplex hextuple luciferase assays Basic Protocol 3: Transfection of luciferase reporter plasmids followed by drug and recombinant protein treatments Basic Protocol 4: Performing the multiplex hextuple luciferase assay.


Assuntos
Escherichia coli/genética , Luciferases/genética , Transdução de Sinais/genética , Células A549 , Genes Reporter , Vetores Genéticos , Humanos , Luciferases/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transfecção
12.
Nucleic Acids Res ; 48(8): 4139-4146, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32232356

RESUMO

GoldenBraid is a rapid, modular, and robust cloning system used to assemble and combine genetic elements. Dictyostelium amoebae represent an intriguing synthetic biological chassis with tractable applications in development, chemotaxis, bacteria-host interactions, and allorecognition. We present GoldenBraid as a synthetic biological framework for Dictyostelium, including a library of 250 DNA parts and assemblies and a proof-of-concept strain that illustrates cAMP-chemotaxis with four fluorescent reporters coded by one plasmid.


Assuntos
Clonagem Molecular/métodos , Dictyostelium/genética , Quimiotaxia , AMP Cíclico/fisiologia , Dictyostelium/fisiologia , Proteínas Luminescentes/genética , Biologia Sintética/métodos
13.
Nat Commun ; 10(1): 5710, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836712

RESUMO

Sensitive simultaneous assessment of multiple signaling pathways within the same cells requires orthogonal reporters that can assay over large dynamic ranges. Luciferases are such genetically encoded candidates due to their sensitivity, versatility, and cost-effectiveness. We expand luciferase multiplexing in post-lysis endpoint luciferase assays from two to six. Light emissions are distinguished by a combination of distinct substrates and emission spectra deconvolution. All six luciferase reporter units are stitched together into one plasmid facilitating delivery of all reporter units through a process we termed solotransfection, minimizing experimental errors. We engineer a multiplex hextuple luciferase assay to probe pathway fluxes through five transcriptional response elements against a control constitutive promoter. We can monitor effects of siRNA, ligand, and chemical compound treatments on their target pathways along with the four other probed cellular pathways. We demonstrate the effectiveness and adaptiveness of multiplex luciferase assaying, and its broad application across different research fields.


Assuntos
Bioensaio/métodos , Luciferases/genética , Medições Luminescentes/métodos , Linhagem Celular Tumoral , Genes Reporter/genética , Humanos , Ligantes , Luciferases/química , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Engenharia de Proteínas , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Genetics ; 213(3): 877-895, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31558581

RESUMO

Heterochromatin-mediated repression is essential for controlling the expression of transposons and for coordinated cell type-specific gene regulation. The small ovary (sov) locus was identified in a screen for female-sterile mutations in Drosophila melanogaster, and mutants show dramatic ovarian morphogenesis defects. We show that the null sov phenotype is lethal and map the locus to the uncharacterized gene CG14438, which encodes a nuclear zinc-finger protein that colocalizes with the essential Heterochromatin Protein 1 (HP1a). We demonstrate Sov functions to repress inappropriate gene expression in the ovary, silence transposons, and suppress position-effect variegation in the eye, suggesting a central role in heterochromatin stabilization.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Animais , Olho Composto de Artrópodes/crescimento & desenvolvimento , Olho Composto de Artrópodes/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Heterocromatina/genética , Mutação com Perda de Função , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Dedos de Zinco
15.
Wiley Interdiscip Rev Dev Biol ; 5(2): 233-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26447401

RESUMO

A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.


Assuntos
Drosophila melanogaster/genética , Marcação de Genes/métodos , Engenharia Genética/métodos , Genoma de Inseto , Animais
16.
Elife ; 42015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25824290

RESUMO

Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biblioteca Gênica , Mutagênese Insercional , Interferência de RNA , Animais , Animais Geneticamente Modificados , Western Blotting , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/genética , Larva/metabolismo , Aprendizagem/fisiologia , Microscopia Confocal , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
17.
Nucleic Acids Res ; 43(8): e56, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25712101

RESUMO

Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family.


Assuntos
Elementos de DNA Transponíveis , Expressão Gênica , Animais , Proteínas de Bactérias/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Corpos Pedunculados/metabolismo , Peptídeos/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Recombinases/metabolismo , Proteínas Repressoras/genética , Serina Endopeptidases/genética , Fatores de Transcrição/genética
18.
Dev Dyn ; 244(4): 540-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25529377

RESUMO

BACKGROUND: SPARC is a collagen-binding glycoprotein whose functions during early development are unknown. We previously reported that SPARC is expressed in Drosophila by hemocytes and the fat body (FB) and enriched in basal laminae (BL) surrounding tissues, including adipocytes. We sought to explore if SPARC is required for proper BL assembly in the FB. RESULTS: SPARC deficiency leads to larval lethality, associated with remodeling of the FB. In the absence of SPARC, FB polygonal adipocytes assume a spherical morphology. Loss-of-function clonal analyses revealed a cell-autonomous accumulation of BL components around mutant cells that include collagen IV (Col lV), Laminin, and Perlecan. Ultrastructural analyses indicate SPARC-deficient adipocytes are surrounded by an aberrant accumulation of a fibrous extracellular matrix. CONCLUSIONS: Our data indicate a critical requirement for SPARC for the proper BL assembly in Drosophila FB. Since Col IV within the BL is a prime determinant of cell shape, the rounded appearance of SPARC-deficient adipocytes is due to aberrant assembly of Col IV.


Assuntos
Membrana Basal/fisiologia , Drosophila melanogaster/embriologia , Corpo Adiposo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Adipócitos/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Basal/metabolismo , Mapeamento Cromossômico , Colágeno Tipo IV/metabolismo , Corpo Adiposo/metabolismo , Genoma de Inseto , Glicoproteínas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Laminina/metabolismo , Larva/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mutação , Sistema Nervoso/embriologia , Osteonectina/metabolismo , Fenótipo
19.
Genome Res ; 24(10): 1707-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25258387

RESUMO

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of -3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (-70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes.


Assuntos
Mapeamento Cromossômico/métodos , Drosophila melanogaster/genética , Mutagênese , Animais , Metanossulfonato de Etila , Feminino , Genes Essenciais , Genes de Insetos , Masculino , Dados de Sequência Molecular , Mutagênicos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Cromossomo X
20.
Methods ; 68(1): 15-28, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583113

RESUMO

The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.


Assuntos
Elementos de DNA Transponíveis/genética , Biologia do Desenvolvimento/métodos , Mutagênicos , Transgenes/genética , Animais , Mapeamento Cromossômico/métodos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mutagênese/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA