Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 26(11): 1103-1119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36331123

RESUMO

BACKGROUND: Gestational protein intake restriction-induced long-lasting harmful outcomes in the offspring's organs and systems. However, few studies have focused on this event's impact on the brain's structures and neurochemical compounds. AIM: The present study investigated the effects on the amygdala neurochemical composition and neuronal structure in gestational protein-restricted male rats' offspring. METHODS: Dams were maintained on isocaloric standard rodent laboratory chow with regular protein [NP, 17%] or low protein content [LP, 6%]. Total cells were quantified using the Isotropic fractionator method, Neuronal 3D reconstruction, and dendritic tree analysis using the Golgi-Cox technique. Western blot and high-performance liquid chromatography performed neurochemical studies. RESULTS: The gestational low-protein feeding offspring showed a significant decrease in birth weight up to day 14, associated with unaltered brain weight in youth or adult progenies. The amygdala cell numbers were unchanged, and the dendrites length and dendritic ramifications 3D analysis in LP compared to age-matched NP progeny. However, the current study shows reduced amygdala content of norepinephrine, epinephrine, and dopamine in LP progeny. These offspring observed a significant reduction in the amygdala glucocorticoid (GR) and mineralocorticoid (MR) receptor protein levels. Also corticotrophin-releasing factor (CRF) amygdala protein content was reduced in 7 and 14-day-old LP rats. CONCLUSION: The observed amygdala neurochemical changes may represent adaptation during embryonic development in response to elevated fetal exposure to maternal corticosteroid levels. In this way, gestational malnutrition stress can alter the amygdala's neurochemical content and may contribute to known behavioral changes induced by gestational protein restriction.


Assuntos
Neuroquímica , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Ratos , Animais , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Dieta com Restrição de Proteínas , Tonsila do Cerebelo , Glucocorticoides
2.
Front Behav Neurosci ; 7: 32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626528

RESUMO

The extended amygdala, composed by the amygdaloid nuclei and the bed nucleus of the stria terminalis (BNST), plays a critical role in anxiety behavior. In particular, the link between the central nucleus of the amygdala (CeA) and the BNST seems to be critical to the formation of anxiety-like behavior. Chronic unpredictable stress (CUS) exposure is recognized as a validated animal model of anxiety and is known to trigger significant morphofunctional changes in the extended amygdala. Quite surprisingly, no study has ever analyzed the role of the CeA in the onset of stress-induced anxiety and fear conditioning behaviors; thus, in the present study we induced a bilateral excitotoxic lesion in the CeA of rats that were subsequently exposed to a chronic stress protocol. Data shows that the lesion in the CeA induces different results in anxiety and fear-behaviors. More specifically, lesioned animals display attenuation of the stress response and of stress-induced anxiety-like behavior measured in the elevated-plus maze (EPM) when compared with stressed animals with sham lesions. This attenuation was paralleled by a decrease of stress-induced corticosterone levels. In contrast, we did not observe any significant effect of the lesion in the acoustic startle paradigm. As expected, lesion of the CeA precluded the appearance of fear behavior in a fear-potentiated startle paradigm in both non-stressed and stressed rats. These results confirm the implication of the CeA in fear conditioning behavior and unravel the relevance of this brain region in the regulation of the HPA axis activity and in the onset of anxiety behavior triggered by stress.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24379803

RESUMO

Stress perception, response, adaptation, and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids (GCs) is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programing intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety, and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to GCs (in utero glucocorticoid exposure, iuGC) present hyperanxiety, increased fear behavior, and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22 kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT), in the initiation of 22 kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT) expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individual stress vulnerability threshold.

4.
Eur J Neurosci ; 36(10): 3396-406, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22928804

RESUMO

The bed nucleus of the stria terminalis (BNST) is critically implicated in anxiety behavior and control of the hypothalamus-pituitary-adrenal axis. Having previously shown that chronic stress triggers dendritic/synaptic remodeling in specific nuclei of the BNST, we characterised the pattern of activation of neurons within different regions of the BNST under basal conditions and after an anxiogenic stimulus in control and stressed rats. Under basal conditions, stressed, but not control, animals displayed increased cFOS expression in the dorsomedial nucleus and decreased activation of the principal nucleus. This pattern resembled that observed in controls that had been exposed to the anxiogenic stimulus. Subsequent analysis of various BNST subnuclei revealed differential patterns of gene expression in controls and stressed animals. We found decreased levels of corticotropin-releasing hormone 1 receptor mRNA expression in the dorsomedial and fusiform nuclei, and a global increase in the levels of corticotropin-releasing hormone 2 receptor in the principal nucleus. In addition, we found subnuclei-specific increases in GABA(A) and NR2B receptors in stressed animals, which suggest changes in the GABAergic and glutamergic innervation of the BNST. Importantly, these findings were associated with increased anxiety-like behavior and impaired control of the hypothalamus-pituitary-adrenal axis in stressed animals. In summary, these data reveal that chronic stress shifts the pattern of response of the BNST to an anxiogenic mode and provide new information on the underlying mechanisms of the stress-induced hypercorticalism and hyperanxious status.


Assuntos
Ansiedade/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico/metabolismo , Animais , Ansiedade/psicologia , Expressão Gênica , Masculino , Aprendizagem em Labirinto , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA