Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902311

RESUMO

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.


Assuntos
Células-Tronco Hematopoéticas , RNA de Cadeia Dupla , Animais , Camundongos , RNA de Cadeia Dupla/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Antígenos CD34/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
2.
Biochim Biophys Acta Proteins Proteom ; 1869(10): 140698, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273599

RESUMO

Abasic (AP) sites in mRNAs are lesions whose accumulation in cells is linked to various neurodegenerative diseases arising from the appearance of truncated peptides due to the premature cessation of translation of these mRNAs. It is believed that the translation of AP site-containing mRNAs is stopped when the damaged codon arrives to the A site, where it is not decoded. We propose an alternative translation arrest mechanism mediated by the 40S ribosomal subunit protein uS3. Recently, it has been shown that in human 80S ribosomal complexes assembled without translation factors, uS3 cross-links to the AP site at the 3'-terminus of the mRNA, whose undamaged part is bound at the 40S subunit channel, via its peptide 55-64 exposed near the mRNA entry pore. In this study, we examined whether such cross-linking occurs during the translation of mRNA with the AP site. To this end, we used a set of synthetic mRNAs bearing the AP site inserted in the desired location in their sequences. An analysis of 80S ribosomal complexes formed with these mRNAs in a mammalian cell-free protein-synthesizing system demonstrates that AP sites do indeed cross-link to uS3 in the course of the translation. We also show that the cross-linking occurs as soon as the AP site arrives to a common favorable position relative to uS3, which is independent on its location in the mRNA. Our findings suggest that the mechanism of stopping translation of damaged mRNAs involving uS3, along with the one mentioned above, could underlie ribosome-associated mRNA quality control.


Assuntos
Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Regiões 3' não Traduzidas , Animais , Sistema Livre de Células , Humanos , Peptídeos/química , Biossíntese de Proteínas , Coelhos , Biologia Sintética
3.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271964

RESUMO

BACKGROUND: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). METHODS: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. RESULTS: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. CONCLUSIONS: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.

4.
Int J Radiat Biol ; 96(9): 1173-1191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32658564

RESUMO

THE PURPOSE OF THE ARTICLE: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation. MATERIALS AND METHODS: Experimental animals were irradiated on the γ-emitter (Cs137) with a dose of 9.4 Gy. Radioprotective properties of several agents (total RNA, single-stranded RNA, double-stranded RNA and B-190) were estimated by the survival/death rates of experimental animals within 30-90 d. Pathomorphological examination of internal organs end electron microscope assay was done on days 9-12 after irradiation. Cloning and other molecular procedures were performed accordingly to commonly accepted protocols. For assessment of the internalization of labeled nucleic acid, bone marrow cells were incubated with double-stranded RNA labeled with 6-FAM fluorescent dye. Cells with internalized double-stranded RNA were assayed using Axio Imager M1 microscope. In the other experiment, bone marrow cells after incubation with double-stranded RNA were stained with Cy5-labeled anti-CD34 antibodies and assayed using Axioskop 2 microscope. RESULTS: In this study, several biological features of the radioprotective action of double-stranded RNA are characterized. It was shown that 160 µg of the double-stranded RNA per mouse protect experimental animals from the absolutely lethal dose of γ-radiation of 9.4 Gy. In different experiments, 80-100% of irradiated animals survive and live until their natural death. Radioprotective properties of double-stranded RNA were found to be independent on its sequence, but strictly dependent on its double-stranded form. Moreover, double-stranded RNA must have 'open' ends of the molecule to exert its radioprotective activity. CONCLUSIONS: Experiments indicate that radioprotective effect of double-stranded RNA is tightly bound to its internalization into hematopoietic stem cells, which further repopulate the spleen parenchyma of irradiated mice. Actively proliferating progenitors form the splenic colonies, which further serve as the basis for restoration of hematopoiesis and immune function and determine the survival of animals received the lethal dose of radiation.


Assuntos
RNA de Cadeia Dupla/farmacologia , RNA Fúngico/farmacologia , Protetores contra Radiação/farmacologia , Saccharomyces cerevisiae/genética , Animais , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Camundongos , Fatores de Tempo
5.
Biochimie ; 158: 117-125, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30594661

RESUMO

The small subunit ribosomal protein uS3 is a critically important player in the ribosome-mRNA interactions during translation and has numerous functions not directly related to protein synthesis in eukaryotes. A peculiar feature of the human uS3 protein is the ability of its fragment 55-64 exposed on the 40S subunit surface near the mRNA entry channel to form cross-links with 3'-terminal dialdehyde derivatives of various unstructured RNAs and with abasic sites in single-stranded DNAs. Here we showed that the ability of the above uS3 fragment to cross-link to abasic sites in DNAs is inherent only in mature cytoplasmic 40S subunits, but not nuclear pre-40S particles, which implies that it may be relevant to the ribosome-mRNA interplay. To clarify this issue, we investigated interactions of human ribosomes with synthetic mRNA analogues bearing an abasic site protected by a photocleavable group at the 3'-termini. We found that these mRNA analogues can form specific complexes with 80S ribosomes and 40S subunits, where the undamaged upstream part of the analogue is fixed in the mRNA binding channel by interaction with the P-site tRNA, and the downstream part located outside the ribosome is cross-linked to the uS3 fragment 55-64. The yield of cross-links of the mRNA analogues was rather high when their undamaged parts were bound to the mRNA channel prior to deprotection of the abasic site enabling its covalent attachment to the 40S subunit via the uS3 protein, but not vice versa. Based on our findings, one can assume that abasic sites, which can occur in mRNAs due to oxidative stress and ageing, are able to interact directly with the uS3 fragment exposed on the 40S subunit surface near the mRNA entry channel during translation. Consequently, the 40S subunit can be considered as a potential mRNA quality controller.


Assuntos
Peptídeos/química , RNA Mensageiro/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Eucariotos/química , Feminino , Humanos , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
6.
Biophys J ; 109(12): 2637-2643, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682820

RESUMO

mRNAs are involved in complicated supramolecular complexes with human 40S and 80S ribosomes responsible for the protein synthesis. In this work, a derivative of nonaribonucleotide pUUCGUAAAA with nitroxide spin labels attached to the 5'-phosphate and to the C8 atom of the adenosine in sixth position (mRNA analog) was used for studying such complexes using double electron-electron resonance/pulsed electron-electron double resonance spectroscopy. The complexes were assembled with participation of tRNA(Phe), which targeted triplet UUC of the derivative to the ribosomal peptidyl site and predetermined location of the adjacent GUA triplet coding for Val at the aminoacyl (A) site. The interspin distances were measured between the two labels of mRNA analog attached to the first nucleotide of the peptidyl site bound codon and to the third nucleotide of the A site bound codon, in the absence/presence of second tRNA bound at the A site. The values of the obtained interspin distances agree with those calculated for available near-atomic structures of similar complexes of 40S and 80S ribosomes, showing that neither 60S subunit nor tRNA at the A site have a noticeable effect on arrangement of mRNA at the codon-anticodon interaction area. In addition, the shapes of distance distributions in four studied ribosomal complexes allowed conclusions on conformational flexibility of mRNA in these complexes. Overall, the results of this study are the first, to our knowledge, demonstration of double electron-electron resonance/pulsed electron-electron double resonance application for measurements of intramolecular distances in multicomponent supramolecular complexes involving intricate cellular machineries and for evaluating dynamic properties of ligands bound to these machineries.


Assuntos
Marcadores de Spin , Sequência de Bases , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Humanos , Óxidos de Nitrogênio/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/metabolismo
7.
Nucleic Acids Res ; 40(5): 2330-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080508

RESUMO

The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transporte Biológico , Linhagem Celular Tumoral , Colesterol/química , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Cinética , Fenótipo , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA