Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 262(1): 92-101, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26625140

RESUMO

HRTEM and HAADF STEM of 1DTbBrx@SWCNT meta-nanotubes reveal three structural modifications of 1D nanocrystals within single wall carbon nanotube channels attributed to a different stoichiometry of the guest crystal. For SWCNTs with diameters Dm > 1.4 nm a most complete tetragonal unit cell is observed. When crystallization occurs inside SWCNT with Dm < 1.4 nm 1D TbBrx crystal deforms a nanotube to elliptical shape in cross section. In this case the 1D crystal unit cell becomes monoclinic, with possible loss of a part of bromine atoms. Two modifications of a monoclinic unit cell appear. One of them is characterized by single or pair vacancies in the structure of the 1D crystal. Another structure is explained by peripheral and central bromine atoms loss. An appearance of such modifications can be stimulated by electron irradiation. The loss of bromine atoms is in agreement with chemical analysis data. Electronic properties of obtained meta-nanotubes are investigated using optical absorption and Raman spectroscopy. It is shown that intercalation of terbium bromide into SWCNTs leads to acceptor doping of SWCNTs. According to local EDX analysis and elemental mapping this doping can arise from significant stoichiometry change in 1D nanocrystal indicating an average Tb:Br atomic ratio of 1:2.8 ± 0.1.

2.
Sci Rep ; 5: 17700, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26639608

RESUMO

The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology.

3.
Nat Commun ; 5: 3257, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24500121

RESUMO

Electron-phonon coupling and the emergence of superconductivity in intercalated graphite have been studied extensively. Yet, phonon-mediated superconductivity has never been observed in the 2D equivalent of these materials, doped monolayer graphene. Here we perform angle-resolved photoemission spectroscopy to try to find an electron donor for graphene that is capable of inducing strong electron-phonon coupling and superconductivity. We examine the electron donor species Cs, Rb, K, Na, Li, Ca and for each we determine the full electronic band structure, the Eliashberg function and the superconducting critical temperature Tc from the spectral function. An unexpected low-energy peak appears for all dopants with an energy and intensity that depend on the dopant atom. We show that this peak is the result of a dopant-related vibration. The low energy and high intensity of this peak are crucially important for achieving superconductivity, with Ca being the most promising candidate for realizing superconductivity in graphene.

4.
Sci Rep ; 3: 3328, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24270355

RESUMO

The optical properties of carbon nanowall (CNW) films in the visible range have been studied and reported for the first time. Depending on the film structure, ultra-low total reflectance up to 0.13% can be reached, which makes the CNW films a promising candidate for the black body-like coating, and thus for a wide range of applications as a light absorber. We have estimated important trends in the optical property variation from sample to sample, and identified the presence of edge states and domain boundaries in carbon nanowalls as well as the film mass density variation as the key factors. Also we demonstrated that at much lower film thickness and density than for a carbon nanotube forest the CNWs yield one order higher specific light absorption.

5.
Sci Rep ; 3: 2168, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23835625

RESUMO

The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA