Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 129(4): 2307-15, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21476686

RESUMO

Naval sonar systems produce signals which may affect the behavior of harbor porpoises, though their effect may be reduced by ambient noise. To show how natural ambient noise influences the effect of sonar sweeps on porpoises, a porpoise in a pool was exposed to 1-s duration up-sweeps, similar in frequency range (6-7 kHz) to those of existing naval sonar systems. The sweep signals had randomly generated sweep intervals of 3-7 s (duty cycle: 19%). Behavioral parameters during exposure to signals were compared to those during baseline periods. The sessions were conducted under five background noise conditions: the local normal ambient noise and four conditions mimicking the spectra for wind-generated noise at Sea States 2-8. In all conditions, the sweeps caused the porpoise to swim further away from the transducer, surface more often, swim faster, and breathe more forcefully than during the baseline periods. However, the higher the background noise level, the smaller the effects of the sweeps on the surfacing behavior of the porpoise. Therefore, the effects of naval sonar systems on harbor porpoises are determined not only by the received level of the signals and the hearing sensitivity of the animals but also by the background noise.


Assuntos
Comportamento Animal/fisiologia , Audição/fisiologia , Ruído/efeitos adversos , Mascaramento Perceptivo/fisiologia , Phocoena/fisiologia , Estimulação Acústica , Acústica , Comunicação Animal , Animais , Masculino , Ciência Militar , Vento
2.
J Acoust Soc Am ; 125(2): 1222-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206895

RESUMO

The underwater hearing sensitivities of two 1-year-old female harbor seals were quantified in a pool built for acoustic research, using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not (go/no-go response). Pure tones (0.125-0.25 kHz) and narrowband frequency modulated (tonal) signals (center frequencies 0.5-100 kHz) of 900 ms duration were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. The audiograms of the two seals did not differ statistically: both plots showed the typical mammalian U-shape, but with a wide and flat bottom. Maximum sensitivity (54 dB re 1 microPa, rms) occurred at 1 kHz. The frequency range of best hearing (within 10 dB of maximum sensitivity) was from 0.5 to 40 kHz (6(1/3) octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 and above 40 kHz. Thresholds below 4 kHz were lower than those previously described for harbor seals, which demonstrates the importance of using quiet facilities, built specifically for acoustic research, for hearing studies in marine mammals. The results suggest that under unmasked conditions many anthropogenic noise sources and sounds from conspecifics are audible to harbor seals at greater ranges than formerly believed.


Assuntos
Ecolocação , Phoca/fisiologia , Percepção da Altura Sonora , Estimulação Acústica , Acústica/instrumentação , Animais , Limiar Auditivo , Sinais (Psicologia) , Arquitetura de Instituições de Saúde , Feminino , Psicoacústica , Espectrografia do Som
3.
Mar Environ Res ; 66(3): 319-26, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18599117

RESUMO

Two harbor porpoises in a floating pen were subjected to five pure tone underwater signals of 70 or 120 kHz with different signal durations, amplitudes and duty cycles (% of time sound is produced). Some signals were continuous, others were intermittent (duty cycles varied between 8% and 100%). The effect of each signal was judged by comparing the animals' surfacing locations and number of surfacings (i.e. number of respirations) during test periods with those during baseline periods. In all cases, both porpoises moved away from the sound source, but the effect of the signals on respiration rates was negligible. Pulsed 70 kHz signals with a source level (SL) of 137 dB had a similar effect as a continuous 70 kHz signal with an SL of 148 dB (re 1 microPa, rms). Also, a pulsed 70 kHz signal with an SL of 147 dB had a much stronger deterring effect than a continuous 70 kHz signal with a similar SL. For pulsed 70 kHz signals (2 s pulse duration, 4s pulse interval, SL 147 dB re 1 microPa, rms), the avoidance threshold sound pressure level (SPL), in the context of the present study, was estimated to be around 130 dB (re 1 microPa, rms) for porpoise 064 and around 124 dB (re 1 microPa, rms) for porpoise 047. This study shows that ultrasonic pingers (70 kHz) can deter harbor porpoises. Such ultrasonic pingers have the advantage that they do not have a "dinner bell" effect on pinnipeds, and probably have no, or less, effect on other marine fauna, which are often sensitive to low frequency sounds.


Assuntos
Estimulação Acústica , Comportamento Animal , Phocoena/fisiologia , Animais , Limiar Auditivo , Masculino , Ultrassom
4.
J Acoust Soc Am ; 123(4): 1858-61, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18396994

RESUMO

The use of ultrasonic sounds in alarms for gillnets may be advantageous, but the deterring effects of ultrasound on porpoises are not well understood. Therefore a harbor porpoise in a large floating pen was subjected to a continuous 50 kHz pure tone with a source level of 122+/-3 dB (re 1 microPa, rms). When the test signal was switched on during test periods, the animal moved away from the sound source. Its respiration rate was similar to that during baseline periods, when the sound was switched off. The behavior of the porpoise was related to the sound pressure level distribution in the pen. The sound level at the animal's average swimming location during the test periods was approximately 107+/-3 dB (re 1 microPa, rms). The avoidance threshold sound pressure level for a continuous 50 kHz pure tone for this porpoise, in the context of this study, is estimated to be 108+/-3 dB (re 1 microPa, rms). This study demonstrates that porpoises may be deterred from an area by high frequency sounds that are not typically audible to fish and pinnipeds and would be less likely masked by ambient noise.


Assuntos
Limiar Auditivo/fisiologia , Aprendizagem da Esquiva , Comportamento Animal , Animais , Ecolocação , Masculino , Mascaramento Perceptivo , Phocoena , Ultrassom
5.
Mar Environ Res ; 65(5): 369-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18295877

RESUMO

World-wide, underwater background noise levels are increasing due to anthropogenic activities. Little is known about the effects of anthropogenic noise on marine fish, and information is needed to predict any negative effects. Behavioural startle response thresholds were determined for eight marine fish species, held in a large tank, to tones of 0.1-64 kHz. Response threshold levels varied per frequency within and between species. For sea bass, the 50% reaction threshold occurred for signals of 0.1-0.7 kHz, for thicklip mullet 0.4-0.7 kHz, for pout 0.1-0.25 kHz, for horse mackerel 0.1-2 kHz and for Atlantic herring 4 kHz. For cod, pollack and eel, no 50% reaction thresholds were reached. Reaction threshold levels increased from approximately 100 dB (re 1 microPa, rms) at 0.1 kHz to approximately 160 dB at 0.7 kHz. The 50% reaction thresholds did not run parallel to the hearing curves. This shows that fish species react very differently to sound, and that generalisations about the effects of sound on fish should be made with care. As well as on the spectrum and level of anthropogenic sounds, the reactions of fish probably depend on the context (e.g. location, temperature, physiological state, age, body size, and school size).


Assuntos
Peixes/fisiologia , Ruído/efeitos adversos , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Audição/fisiologia , Mar do Norte , Água do Mar , Som/efeitos adversos , Especificidade da Espécie , Natação
6.
J Acoust Soc Am ; 122(2): 1238-48, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17672670

RESUMO

It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m-diam circle around a central listening station. The duration and received level of the narrowband frequency-modulated signals (center frequencies 16, 64 and 100 kHz) were varied. The animal's localization performance increased when the signal duration increased from 600 to 1000 ms. The lower the received sound pressure level (SPL) of the signal, the harder the animal found it to localize the sound source. When pulse duration was long enough (approximately 1 s) and the received SPLs of the sounds were high (34-50 dB above basic hearing thresholds or 3-15 dB above the theoretical masked detection threshold in the ambient noise condition of the present study), the animal could locate sounds of the three frequencies almost equally well. The porpoise was able to locate sound sources up to 124 degrees to its left or right more easily than sounds from behind it.


Assuntos
Ecolocação/fisiologia , Phocoena/fisiologia , Estimulação Acústica , Animais , Animais Selvagens , Audição/fisiologia , Abrigo para Animais , Masculino , Água do Mar , Som
7.
Mar Environ Res ; 64(2): 160-80, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17316783

RESUMO

World-wide many cetaceans drown incidentally in fishing nets. To reduce the unwanted bycatch in gillnets, pingers (acoustic alarms) have been developed that are attached to the nets. In the European Union, pingers will be made compulsory in some areas in 2005 and in others in 2007. However, pingers may effect non-target marine fauna such as fish. Therefore in this study, the effects of seven commercially-available pingers on the behaviour of five North Sea fish species in a large tank were quantified. The species tested were: sea bass (Dicentrarchus labrax), pout (Trisopterus luscus), thicklip mullet (Chelon labrosus), herring (Clupea harengus), and cod (Gadus morhua). The fish were housed as single-species schools of 9-13 individuals in a tank. The behaviour of fish in quiet periods was compared with their behaviour during periods with active pingers. The results varied both between pingers and between fish species. Sea bass decreased their speed in response to one pinger and swam closer to the surface in response to another. Thicklip mullet swam closer to the bottom in response to two pingers and increased their swimming speed in response to one pinger. Herring swam faster in response to one pinger, and pout and cod (close relatives) showed no behavioural responses to any of the pingers. Of the seven pingers tested, four elicited responses in at least one fish species, and three elicited no responses. Whether similar responses would be elicited in these fish species in the wild, and if so, whether such responses would influence the catch rate of fisheries, cannot be derived from the results of this study. However, the results indicate the need for field studies with pingers and fish. Based on the small number of fish species tested, the present study suggests that the higher the frequency of a pinger, the less likely it is to affect the behaviour of marine fish.


Assuntos
Estimulação Acústica , Comportamento Animal , Cetáceos/fisiologia , Pesqueiros/instrumentação , Peixes/fisiologia , Animais , Bass/anatomia & histologia , Bass/fisiologia , Conservação dos Recursos Naturais , Peixes/anatomia & histologia , Gadiformes/anatomia & histologia , Gadiformes/fisiologia , Gadus morhua/anatomia & histologia , Gadus morhua/fisiologia , Mar do Norte , Smegmamorpha/anatomia & histologia , Smegmamorpha/fisiologia , Especificidade da Espécie , Natação
8.
Mar Environ Res ; 62(5): 356-73, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16870247

RESUMO

The marine aquaculture industry suffers losses due to pinniped attacks which damage net enclosures and fish stocks. Acoustic harassment devices (AHDs) emit loud sounds which are intended to deter pinnipeds from approaching aquaculture enclosures. At present, many AHDs emit sounds in the 8-20 kHz frequency range. It is not known whether sounds of higher frequencies have a deterrent effect on seals. Therefore five captive harbour seals (Phoca vitulina) were subjected to four series of tone pulses together spanning a broad frequency range (8, 16, 32 and 45 kHz). Pulse duration was 250 ms and pulse interval was 5s. Each of the four sounds was made deterrent by increasing the amplitude. The seals reacted by swimming away from the sounds. The displacement effect of each sound was judged by comparing the animals' surface positions, and number of surfacings, during ten 45 min baseline periods with ten 45 min test periods per frequency (one frequency per day in rotation, 40 sessions in total). The seals were displaced by all four frequencies throughout the 40 trial days. The seals came to the surface more often when the test tones were produced than in the baseline periods. The initial displacement distances did not change over the 40 test days. This suggests that operating AHDs for only short periods will be more effective and less likely to result in habituation by the seals than operating them continuously. The discomfort threshold sound pressure level (SPL) was established for each of the four pulse frequencies. The acoustic discomfort threshold SPL is defined as the boundary SPL between the area that the animals generally occupied during the transmission of the sounds and the area that they generally did not enter during sound transmission. The discomfort threshold SPL may depend on the context.


Assuntos
Aquicultura/métodos , Comportamento Animal , Atividade Motora , Phoca/psicologia , Água , Estimulação Acústica/métodos , Acústica/instrumentação , Animais , Aquicultura/instrumentação , Feminino , Masculino , Ruído , Phoca/fisiologia , Ondas de Rádio
9.
Mar Environ Res ; 61(1): 19-39, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16038972

RESUMO

To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network (ACME) using underwater sounds to encode and transmit data is currently under development. Marine mammals might be affected by ACME sounds since they may use sound of a similar frequency (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the acoustic transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour seal (Phoca vitulina). No information is available on the effects of ACME-like sounds on harbour seals, so this study was carried out as part of an environmental impact assessment program. Nine captive harbour seals were subjected to four sound types, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' location in a pool during test periods to that during baseline periods, during which no sound was produced. Each of the four sounds could be made into a deterrent by increasing its amplitude. The seals reacted by swimming away from the sound source. The sound pressure level (SPL) at the acoustic discomfort threshold was established for each of the four sounds. The acoustic discomfort threshold is defined as the boundary between the areas that the animals generally occupied during the transmission of the sounds and the areas that they generally did not enter during transmission. The SPLs at the acoustic discomfort thresholds were similar for each of the sounds (107 dB re 1 microPa). Based on this discomfort threshold SPL, discomfort zones at sea for several source levels (130-180 dB re 1 microPa) of the sounds were calculated, using a guideline sound propagation model for shallow water. The discomfort zone is defined as the area around a sound source that harbour seals are expected to avoid. The definition of the discomfort zone is based on behavioural discomfort, and does not necessarily coincide with the physical discomfort zone. Based on these results, source levels can be selected that have an acceptable effect on harbour seals in particular areas. The discomfort zone of a communication sound depends on the sound, the source level, and the propagation characteristics of the area in which the sound system is operational. The source level of the communication system should be adapted to each area (taking into account the width of a sea arm, the local sound propagation, and the importance of an area to the affected species). The discomfort zone should not coincide with ecologically important areas (for instance resting, breeding, suckling, and feeding areas), or routes between these areas.


Assuntos
Acústica , Comportamento Animal , Atividade Motora , Phoca/psicologia , Água , Análise de Variância , Animais , Limiar Auditivo , Feminino , Masculino , Phoca/fisiologia , Valores de Referência , Som , Espectrografia do Som , Transdutores
10.
J Acoust Soc Am ; 118(2): 1172-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16158671

RESUMO

Receiving beam patterns of a harbor porpoise were measured in the horizontal plane, using narrow-band frequency modulated signals with center frequencies of 16, 64, and 100 kHz. Total signal duration was 1000 ms, including a 200 ms rise time and 300 ms fall time. The harbor porpoise was trained to participate in a psychophysical test and stationed itself horizontally in a specific direction in the center of a 16-m-diameter circle consisting of 16 equally-spaced underwater transducers. The animal's head and the transducers were in the same horizontal plane, 1.5 m below the water surface. The go/no-go response paradigm was used; the animal left the listening station when it heard a sound signal. The method of constants was applied. For each transducer the 50% detection threshold amplitude was determined in 16 trials per amplitude, for each of the three frequencies. The beam patterns were not symmetrical with respect to the midline of the animal's body, but had a deflection of 3-7 degrees to the right. The receiving beam pattern narrowed with increasing frequency. Assuming that the pattern is rotation-symmetrical according to an average of the horizontal beam pattern halves, the receiving directivity indices are 4.3 at 16 kHz, 6.0 at 64 kHz, and 11.7 dB at 100 kHz. The receiving directivity indices of the porpoise were lower than those measured for bottlenose dolphins. This means that harbor porpoises have wider receiving beam patterns than bottlenose dolphins for the same frequencies. Directivity of hearing improves the signal-to-noise ratio and thus is a tool for a better detection of certain signals in a given ambient noise condition.


Assuntos
Ecolocação/fisiologia , Phocoena/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica/instrumentação , Animais , Condicionamento Psicológico , Masculino , Psicoacústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA