Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Astron Astrophys ; 6482021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34257462

RESUMO

The reaction between atomic oxygen and molecular hydrogen is an important one in astrochemistry as it regulates the abundance of the hydroxyl radical and serves to open the chemistry of oxygen in diverse astronomical environments. However, the existence of a high activation barrier in the reaction with ground state oxygen atoms limits its efficiency in cold gas. In this study we calculate the dependence of the reaction rate coefficient on the rotational and vibrational state of H2 and evaluate the impact on the abundance of OH in interstellar regions strongly irradiated by far-UV photons, where H2 can be efficiently pumped to excited vibrational states. We use a recently calculated potential energy surface and carry out time-independent quantum mechanical scattering calculations to compute rate coefficients for the reaction O(3 P) + H2 (v, j) → OH + H, with H2 in vibrational states v = 0-7 and rotational states j = 0-10. We find that the reaction becomes significantly faster with increasing vibrational quantum number of H2, although even for high vibrational states of H2 (v = 4-5) for which the reaction is barrierless, the rate coefficient does not strictly attain the collision limit and still maintains a positive dependence with temperature. We implemented the calculated state-specific rate coefficients in the Meudon PDR code to model the Orion Bar PDR and evaluate the impact on the abundance of the OH radical. We find the fractional abundance of OH is enhanced by up to one order of magnitude in regions of the cloud corresponding to A V = 1.3-2.3, compared to the use of a thermal rate coefficient for O + H2, although the impact on the column density of OH is modest, of about 60%. The calculated rate coefficients will be useful to model and interpret JWST observations of OH in strongly UV-illuminated environments.

2.
J Phys Chem A ; 123(37): 7920-7931, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31461272

RESUMO

In the past decade, ring polymer molecular dynamics (RPMD) has emerged as a very efficient method to determine thermal rate coefficients for a great variety of chemical reactions. This work presents the application of this methodology to study the O(3P) + HCl reaction, which constitutes a stringent test for any dynamical calculation due to rich resonant structure and other dynamical features. The rate coefficients, calculated on the 3A' and 3A″ potential energy surfaces (PESs) by Ramachandran and Peterson [ J. Chem. Phys. 2003 , 119 , 9590 ], using RPMD and quasiclassical trajectories (QCT) are compared with the existing experimental and the quantum mechanical (QM) results by Xie et al. [ J. Chem. Phys. 2005 122 , 014301 ]. The agreement is very good at T > 600 K, although RPMD underestimates rate coefficients by a factor between 4 and 2 in the 200-500 K interval. The origin of these discrepancies lies in the large contribution from tunneling on the 3A″ PES, which is enhanced by resonances due to quasibound states in the van der Waals wells. Although tunneling is fairly well accounted for by RPMD even below the crossover temperature, the effect of resonances, a long-time effect, is not included in the methodology. At the highest temperatures studied in this work, 2000-3300 K, the RPMD rate coefficients are somewhat larger than the QM ones, but this is shown to be due to limitations in the QM calculations and the RPMD are believed to be more reliable.

3.
Phys Chem Chem Phys ; 13(18): 8502-14, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21431209

RESUMO

The dynamics of the reaction O((1)D) + HCl → ClO + H, OH + Cl has been investigated in detail by means of a time-dependent wave packet (TDWP) method in comparison with quasiclassical trajectory (QCT) and statistical approaches on the ground potential energy surface by Martínez et al. [Phys. Chem. Chem. Phys., 2000, 2, 589]. Fully coupled quantum mechanical (QM) reaction probabilities for high values of the total angular momentum (J≤ 50) are reported for the first time. At the low collision energy regime (E(c)≤ 0.4 eV) the TDWP probabilities are well reproduced by the QCT and statistical results for the ClO forming product channel, but for the OH + Cl arrangement, only QCT probabilities are found to agree with the QM values. The good accordance found between the rigorous statistical models and the dynamical QM and QCT calculations for the O + HCl → ClO + H process underpins the assumption that the reaction pathway leading to ClO is predominantly governed by a complex-forming mechanism. In addition, to further test the statistical character of this reaction channel, the laboratory angular distribution and time-of-flight spectra obtained in a crossed molecular beam study by Balucani et al. [Chem. Phys. Lett. 1991, 180, 34] at a collision energy as high as 0.53 eV have been simulated using the state resolved differential cross section obtained with the statistical approaches yielding a satisfactory agreement with the experimental results. For the other channel, O + HCl → OH + Cl, noticeable differences between the statistical results and those found with the QCT calculation suggest that the dynamics of the reaction are controlled by a direct mechanism. The comparison between the QCT and QM-TDWP results in the whole range of collision energies lends credence to the QCT description of the dynamics of this reaction.

4.
J Phys Chem A ; 113(52): 14237-50, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20028155

RESUMO

The dynamics of the O((1)D) + HCl(v = 0, j = 0) --> Cl + OH reaction at a 0.26 eV collision energy has been investigated by means of a quasiclassical trajectory (QCT) and statistical quantum and quasiclassical methods. State-resolved cross sections and Cl atom velocity distributions have been calculated on two different potential energy surfaces (PESs): the H2 surface (Martinez et al. Phys. Chem. Chem. Phys. 2000, 2, 589) and the latest surface by Peterson, Bowman, and co-workers (PSB2) (J. Chem. Phys. 2000, 113, 6186). The comparison with recent experimental results reveals that the PSB2 PES manages to describe correctly differential cross sections and the velocity distributions of the departing Cl atom. The calculations on the H2 PES seem to overestimate the OH scattering in the forward direction and the fraction of Cl at high recoil velocities. Although the comparison of the corresponding angular distributions is not bad, significant deviations with a statistical description are found, thus ruling out a complex-forming mechanism as the dominant reaction pathway. However, for the ClO + H product channel, the QCT and statistical predictions are found to be in good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA