Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37103394

RESUMO

Arthrospira platensis biomass is a sustainable source of bioactive products for the food, cosmetic, and medicine industries. As well as primary metabolites, different secondary metabolites can be obtained via distinct enzymatic degradation of biomass. In this work, different hydrophilic extracts were obtained after treating the biomass with: (i) a serine endo-peptidase (Alcalase®), (ii) a mixture of amino-, dipeptidyl-, and endo-peptidases (Flavourzyme®), (iii) a mixture of endo-1,3(4)-ß-glucanase and an endo-1,4-xylanase, and ß-glucanase (Ultraflo®), and (iv) an exo-1,3-glucanase (Vinoflow®) (all the enzymes from Novozymes A/S (bagsvaerd, Denmark)); with subsequent extraction of the biocomponents with an isopropanol/hexane mixture. The composition of each aqueous phase extract (in terms of amino acids, peptides, oligo-elements, carbohydrates, and phenols) and their in vitro functional properties were compared. The conditions described in this work using the enzyme Alcalase® permits the extraction of eight distinctive peptides. This extract is 7.3 times more anti-hypertensive, 106 times more anti-hypertriglyceridemic, 26 times more hypocholesterolemic, has 4.4 times more antioxidant activities, and has 2.3 times more phenols, than the extract obtained without any prior enzyme biomass digestion. Alcalase® extract is an advantageous product with potential application in functional food, pharmaceutics, and cosmetics.


Assuntos
Antioxidantes , Spirulina , Antioxidantes/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/metabolismo , Proteólise , Biomassa , Proteínas/metabolismo , Peptídeos/química , Spirulina/química , Subtilisinas/metabolismo , Fenóis/metabolismo
2.
Pharm Biol ; 60(1): 627-637, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35294322

RESUMO

CONTEXT: Vascular dysfunction is considered a hallmark of ageing that has been associated with altered vasomotor responses, in which nitric oxide (NO) and reactive oxygen species participate. The consumption of Spirulina extracts, with antioxidant properties, increased recently. OBJECTIVE: This study investigates the effect of Spirulina aqueous extract (SAE) on the vascular function of the aorta from aged rats. MATERIALS AND METHODS: Aortic segments from aged male Sprague-Dawley rats (20-22 months old) were exposed to SAE (0.1% w/v, for 3 h) to analyse: (i) the vasodilator response induced by acetylcholine (ACh), by the NO donor sodium nitroprusside (SNP), by the carbon monoxide releasing molecule (CORM) and by the KATP channel opener, cromakalim (CK); (ii) the vasoconstrictor response induced by KCl and noradrenaline (NA); (iii) the production of NO and superoxide anion, and (iv) the expression of the p-eNOS and HO-1 proteins. RESULTS: Incubation with SAE increased the expression of p-eNOS (1.6-fold) and HO-1 (2.0-fold), enhanced NO release (1.4-fold in basal and 1.9-fold in ACh-stimulated conditions) while decreased the production of superoxide (0.7-fold). SAE also increased the sensitivity (measured as pEC50) to ACh (control: -7.06 ± 0.11; SAE: -8.16 ± 0.21), SNP (control: -7.96 ± 0.16; SAE: -9.11 ± 0.14) and CK (control: -7.05 ± 0.39; SAE: -8.29 ± 0.53), and potentiated the response to KCl (1.3-fold) and to NA (1.7-fold). CONCLUSION: The antioxidant properties of SAE improved the vasomotor responses of aorta from aged rats. These results may support the use of Spirulina as a protection against vascular dysfunction.


Assuntos
Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Spirulina/química , Doenças Vasculares/prevenção & controle , Acetilcolina/farmacologia , Fatores Etários , Envelhecimento , Animais , Aorta/patologia , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vasodilatadores/farmacologia
3.
Enzyme Microb Technol ; 132: 109388, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731951

RESUMO

Conjugated linolenic acid (CLA) has important health effects, and their phospholipids forms (PL) are advantageous vehicles of this bioactive agent. Acidolysis of soybean phosphatidylcholine (PC) with conjugated linolenic acid (CLA) catalyzed by Lecitase® Ultra immobilized on Duolite A658 was studied. This reaction is typically limited by hydrolysis, producing 60-90 % of lyso- and glycero-PC and yielding low the process efficiency. Drying the amphiphilic PC material was found the key factor for maximal diacylglycerol phosphatidylcholines (PC) production and different drying approaches were studied to maximize the formation of PC rich in CLA in a solvent free process. PC lyophilization for 24 h getting dry solid appearance (PC; 783 ±â€¯11 mg water/Kg PC) or other standard protocols to reduce water content/activity of reaction medium, did not improve the reaction performance. However, adding 4 extra days to the second step of lyophilization at high vacuum (1 Pa) and moderate temperature (20 °C), followed by further PC dehydration with molecular sieves, drastically reduced the hydrolysis process by achieving a extensive PC dehydration (279 ±â€¯4 mg water/Kg PC), obtaining for the first time >99% molar yield of diacyl-PC product. After 24 h of reaction, a diacyl-PC product with 72.3% CLA content was obtained. PC molecules containing two CLA were the major species formed.


Assuntos
Enzimas Imobilizadas/química , Liofilização/métodos , Fosfolipases/química , Fosfolipídeos/química , Catálise , Hidrólise , Fosfatidilcolinas/química , Pró-Fármacos , Ácido alfa-Linolênico/química
4.
Int J Vasc Med ; 2020: 6657077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457015

RESUMO

Hypertension is a multifactorial disorder considered one of the major causes of premature death worldwide. This pathology is associated with vascular functional/structural alterations in which nitric oxide (NO) and oxygen reactive species participate. On the other hand, the use of microalgae extracts in the treatment of cardiovascular diseases is increasing. Based on the antioxidant and antihypertensive properties of Spirulina, this study aims to investigate the effect of an aqueous extract of Spirulina on the vasodilator function of the aorta from spontaneously hypertensive rats (SHR), analyzing the functional role of NO. For this, aortic segments from male SHR were divided into two groups, one control and the other exposed to an Spirulina aqueous extract (0.1% w/v, for 3 hours), to analyze (i) the production of NO, superoxide anion, and hydrogen peroxide; (ii) the vasodilator response induced by acetylcholine (ACh), by the NO donor and sodium nitroprusside (SNP), and by the KATP channel opener and pinacidil; and (iii) the expression of the p-Akt, p-eNOS, and HO-1 proteins. The results showed that the aqueous Spirulina extract (i) increased the production of NO, did not significantly modify that of superoxide, while decreased that of hydrogen peroxide; (ii) increased the vasodilatory responses induced by ACh, NPS, and pinacidil; and (iii) increased the expression of p-Akt and HO-1. These results suggest that incubation with the aqueous Spirulina extract improves the vascular function of arteries from SHR by increasing the release/bioavailability/function of NO. Increased KATP channel activation and expression of pAkt and HO-1 appear to be participating in these actions.

5.
Food Chem ; 296: 123-131, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31202296

RESUMO

Phospholipids (PL) rich in conjugated linolenic acid (CLA) have important health effects. Yields of phosphatidylcholine (PC) acidolysis with CLA use to be limited to <30%, due to competitive side-hydrolysis. Duolite A658-Lecitase is a very suitable biocatalyst for this reaction. In this study, PC hydrolysis has been practically eliminated using extremely dried lyophilized PC (279 ±â€¯4 mg water/Kg PC), obtaining close to 100% molar yield of modified PC (72.3% CLA) with Duolite-Lecitase in 24 h, the highest yield reported in the literature for this reaction. It has been better improved by changing the immobilization support, using three food grade hydrophobic supports (Styrene, and two Octadecyl methacrylates (OM and OMC)). In only 2 h, with a 1/12 PC/CLA molar ratio at 50 °C, similar almost quantitative yields of PC with 74.4% CLA content has been obtained using OM-Lecitase. The fatty acid composition of modified PCs is not affected by the enzyme immobilization protocol.


Assuntos
Ácidos Linoleicos Conjugados/metabolismo , Fosfolipases A1/metabolismo , Fosfolipídeos/química , Biocatálise , Cromatografia Gasosa , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ácidos Graxos/análise , Hidrólise , Ácidos Linoleicos Conjugados/química , Fosfatidilcolinas/química , Fosfolipases A1/química , Fosfolipídeos/metabolismo
6.
Food Chem ; 245: 39-46, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287386

RESUMO

Lipases B from Candida antarctica (CALB), Rhizomucor miehei (RML) and Thermomyces lanuginosus (TLL) were immobilized on octadecyl methacylate (OM) or octadecyl methacrylate (OMC) beads. Their specific activity and regioselectivity were studied in the synthesis of conjugated linoleic acid (CLA) partial glycerides, which presented nutraceutical properties. TLL derivatives were poor catalysts. Novozym® 435 was much better than Lipozyme® RM IM. RML activity (a GRAS enzyme) was modulated via immobilization. After only 3 h, OM-RML gave the highest CLA conversion (54% at 40 °C with 1:3 M ratio of glycerol to CLA). OM-RML reduced by a factor of 3.12 and 1.16 the activation energy of the reaction with Lipozyme® RM IM and Novozym® 435, respectively. The new GRAS preparation OM-RML brings forth an optimal regioselective preparation of sn-1 mono and sn-1,3 diacylglycerols rich in CLA, with a ratio of sn-1,3/sn-1,2 regioisomers of 21.8, compared to 2.3 for Novozym® 435.


Assuntos
Enzimas Imobilizadas/metabolismo , Glicerídeos/química , Ácidos Linoleicos Conjugados/síntese química , Lipase/química , Lipase/metabolismo , Catálise , Diglicerídeos/química , Enzimas Imobilizadas/química , Eurotiales/enzimologia , Proteínas Fúngicas , Glicerídeos/síntese química , Glicerol/química , Ácidos Linoleicos Conjugados/química , Rhizomucor/enzimologia
7.
Enzyme Microb Technol ; 90: 35-44, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27241290

RESUMO

Industrial use of Novozym 435 in synthesis of structured lipids and biodiesel via alcoholysis is limited by mass transfer effects of the glycerides through immobilized enzymes and its low operational stability under operation conditions. To better understand this, differently modified Novozym 435 preparations, differing in their surface nature and in their interactions with reactants, have been compared in the alcoholysis of Camelina sativa oil. The three modifications performed have been carried out under conditions where all exposed groups of the enzyme have been modified. These modifications were: 2,4,6-trinitrobenzensulfonic acid (Novo-TNBS), ethylendiamine (Novo-EDA) and polyethylenimine (Novo-PEI). Changes in their operational performance are analyzed in terms of changes detected by scan electron microscopy in the support morphology. The hydrophobic nature of the TNBS accelerates the reaction rate; t-ButOH co-solvent swells the macroporous acrylic particles of Lewatit VP OC 1600 in all biocatalysts, except in the case of Novo-PEI. This co-solvent only increases the maximal conversions obtained at 24h using the modified biocatalysts. t-ButOH reduces enzyme inactivation by alcohol and water. In a co-solvent system, these four biocatalysts remain fully active after 14 consecutive reaction cycles of 24h, but only Novo-TNBS yields maximal conversion before cycle 5. Some deposits on biocatalyst particles could be appreciated during reuses, and TNBS derivatization diminishes the accumulation of product deposits on the catalyst surface. Most particles of commercial Novozym(®) 435 are broken after operation for 14 reaction cycles. The broken particles are fully active, but they cause problems of blockage in filtration operations and column reactors. The three derivatizations studied make the matrix particles more resistant to rupture.


Assuntos
Lipase/química , Lipase/metabolismo , Álcoois/química , Álcoois/metabolismo , Biocatálise , Biotecnologia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/ultraestrutura , Etilenodiaminas/química , Proteínas Fúngicas , Lipase/ultraestrutura , Microscopia Eletrônica de Varredura , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Polietilenoimina/química , Ácido Trinitrobenzenossulfônico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA