Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264435

RESUMO

BACKGROUND: Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown. METHODS: In this study, we investigated the ability of human colorectal cancer (CRC)-derived CAFs to cross-present neoantigen-derived synthetic long peptides (SLPs), corresponding to tumor-derived mutant peptides, and how this affects tumor-specific T-cell function. Processing of the SLP was studied by targeting components of the cross-presentation machinery through CRISPR/Cas9 and siRNA-mediated genetic ablation to identify the key molecules involved in fibroblast-mediated cross-presentation. Multispectral flow cytometry and killing assays were performed to study the effect of fibroblast cross-presentation on T cell function. RESULTS: Here, we show that human CRC-derived CAFs display an enhanced capacity to cross-present neoantigen-derived SLPs when compared with normal colonic fibroblasts. Cross-presentation of antigens by fibroblasts involved the lysosomal protease cathepsin S. Cathepsin S expression by CAFs was detected in situ in human CRC tissue, was upregulated in ex vivo cultured CRC-derived CAFs and showed increased expression in normal fibroblasts after exposure to CRC-conditioned medium. Cognate interaction between CD8+ T cells and cross-presenting CAFs suppressed T cell function, reflected by decreased cytotoxicity, reduced activation (CD137) and increased exhaustion (TIM3, LAG3 and CD39) marker expression. CONCLUSION: These data indicate that CAFs may directly suppress tumor-specific T cell function in an antigen-dependent fashion in human CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Animais , Fibroblastos Associados a Câncer/metabolismo , Catepsinas , Neoplasias Colorretais/genética , Apresentação Cruzada , Humanos , Lisossomos/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Regulação para Cima
2.
Open Biol ; 8(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875199

RESUMO

Cancer immunotherapy has experienced remarkable advances in recent years. Striking clinical responses have been achieved for several types of solid cancers (e.g. melanoma, non-small cell lung cancer, bladder cancer and mismatch repair-deficient cancers) after treatment of patients with T-cell checkpoint blockade therapies. These have been shown to be particularly effective in the treatment of cancers with high mutation burden, which places tumour-mutated antigens (neo-antigens) centre stage as targets of tumour immunity and cancer immunotherapy. With current technologies, neo-antigens can be identified in a short period of time, which may support the development of complementary, personalized approaches that increase the number of tumours amenable to immunotherapeutic intervention. In addition to reviewing the state of the art in cancer immunotherapy, we discuss potential avenues that can bring the immunotherapy revolution to a broader patient group including cancers with low mutation burden.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Antineoplásicos Imunológicos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/genética , Neoplasias/imunologia , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA