Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37507978

RESUMO

NADPH oxidase (NOX2) is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator in inflammatory and cardiovascular pathologies. Nevertheless, there is a lack of specific NOX2 pharmacological inhibitors. In medicinal chemistry, heterocyclic compounds are essential scaffolds for drug design, and among them, indole is a very versatile pharmacophore. We tested the hypothesis that indole heteroaryl-acrylonitrile derivatives may serve as NOX2 inhibitors by evaluating the capacity of 19 of these molecules to inhibit NOX2-derived ROS production in human neutrophils (HL-60 cells). Of these compounds, C6 and C14 exhibited concentration-dependent inhibition of NOX2 (IC50~1 µM). These molecules also reduced NOX2-derived oxidative stress in cardiomyocytes and prevented cardiac damage induced by ischemia-reperfusion. Compound C6 significantly reduced the membrane translocation of p47phox, a cytosolic subunit that is required for NOX2 activation. Molecular docking analyses of the binding modes of these molecules with p47phox indicated that C6 and C14 interact with specific residues in the inner part of the groove of p47phox, the binding cavity for p22phox. This combination of methods showed that novel indole heteroaryl acrylonitriles represent interesting lead compounds for developing specific and potent NOX2 inhibitors.

2.
J Physiol ; 601(9): 1655-1673, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36625071

RESUMO

The Transient Receptor Potential Vanilloid 4 (TRPV4) channel has been shown to function in many physiological and pathophysiological processes. Despite abundant information on its importance in physiology, very few endogenous agonists for this channel have been described, and very few underlying mechanisms for its activation have been clarified. TRPV4 is expressed by several types of cells, such as vascular endothelial, and skin and lung epithelial cells, where it plays pivotal roles in their function. In the present study, we show that TRPV4 is activated by lysophosphatidic acid (LPA) in both endogenous and heterologous expression systems, pinpointing this molecule as one of the few known endogenous agonists for TRPV4. Importantly, LPA is a bioactive glycerophospholipid, relevant in several physiological conditions, including inflammation and vascular function, where TRPV4 has also been found to be essential. Here we also provide mechanistic details of the activation of TRPV4 by LPA and another glycerophospholipid, lysophosphatidylcholine (LPC), and show that LPA directly interacts with both the N- and C-terminal regions of TRPV4 to activate this channel. Moreover, we show that LPC activates TRPV4 by producing an open state with a different single-channel conductance to that observed with LPA. Our data suggest that the activation of TRPV4 can be finely tuned in response to different endogenous lipids, highlighting this phenomenon as a regulator of cell and organismal physiology. KEY POINTS: The Transient Receptor Potential Vaniloid (TRPV) 4 ion channel is a widely distributed protein with important roles in normal and disease physiology for which few endogenous ligands are known. TRPV4 is activated by a bioactive lipid, lysophosphatidic acid (LPA) 18:1, in a dose-dependent manner, in both a primary and a heterologous expression system. Activation of TRPV4 by LPA18:1 requires residues in the N- and C-termini of the ion channel. Single-channel recordings show that TRPV4 is activated with a decreased current amplitude (conductance) in the presence of lysophosphatidylcholine (LPC) 18:1, while LPA18:1 and GSK101 activate the channel with a larger single-channel amplitude. Distinct single-channel amplitudes produced by LPA18:1 and LPC18:1 could differentially modulate the responses of the cells expressing TRPV4 under different physiological conditions.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Cátion TRPV/metabolismo , Lisofosfatidilcolinas/farmacologia , Lisofosfolipídeos/farmacologia
3.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549871

RESUMO

The transient receptor potential vanilloid 4 (TRPV4) ion channel is present in different tissues including those of the airways. This channel is activated in response to stimuli such as changes in temperature, hypoosmotic conditions, mechanical stress, and chemicals from plants, lipids, and others. TRPV4's overactivity and/or dysfunction has been associated with several diseases, such as skeletal dysplasias, neuromuscular disorders, and lung pathologies such as asthma and cardiogenic lung edema and COVID-19-related respiratory malfunction. TRPV4 antagonists and blockers have been described; nonetheless, the mechanisms involved in achieving inhibition of the channel remain scarce, and the search for safe use of these molecules in humans continues. Here, we show that the widely used bronchodilator salbutamol and other ligands of ß-adrenergic receptors inhibit TRPV4's activation. We also demonstrate that inhibition of TRPV4 by salbutamol is achieved through interaction with two residues located in the outer region of the pore and that salbutamol leads to channel closing, consistent with an allosteric mechanism. Our study provides molecular insights into the mechanisms that regulate the activity of this physiopathologically important ion channel.


Assuntos
COVID-19 , Canais de Potencial de Receptor Transitório , Humanos , Canais de Cátion TRPV/química , Receptores Adrenérgicos beta , Ligantes , Albuterol/farmacologia
4.
J Chem Inf Model ; 62(12): 3067-3078, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35670773

RESUMO

Pseudomonas aeruginosa is a highly pathogenic Gram-negative microorganism associated with high mortality levels in burned or immunosuppressed patients or individuals affected by cystic fibrosis. Studies support a colonization mechanism whereby P. aeruginosa can breakdown the host cell membrane phospholipids through the sequential action of two enzymes: (I) hemolytic phospholipase C acting upon phosphatidylcholine or sphingomyelin to produce phosphorylcholine (Pcho) and (II) phosphorylcholine phosphatase (PchP) that hydrolyzes Pcho to generate choline and inorganic phosphate. This coordinated action provides the bacteria with carbon, nitrogen, and inorganic phosphate to support growth. Furthermore, PchP exhibits a distinctive inhibition mechanism by high substrate concentration. Here, we combine kinetic assays and computational approaches such as molecular docking, molecular dynamics, and free-energy calculations to describe the inhibitory site of PchP, which shares specific residues with the enzyme's active site. Our study provides insights into a coupled inhibition mechanism by the substrate, allowing us to postulate that the integrity of the inhibition site is needed to the correct functioning of the active site. Our results allow us to gain a better understanding of PchP function and provide the basis for a rational drug design that might contribute to the treatment of infections caused by this important opportunistic pathogen.


Assuntos
Monoéster Fosfórico Hidrolases , Pseudomonas aeruginosa , Humanos , Simulação de Acoplamento Molecular , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/química , Fosforilcolina/química , Fosforilcolina/farmacologia , Pseudomonas aeruginosa/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163519

RESUMO

Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate-protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources.


Assuntos
Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Butiratos/metabolismo , Indóis/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Tioglucosídeos/metabolismo
6.
J Med Chem ; 64(20): 14997-15016, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34624193

RESUMO

The sigma 1 receptor (S1R) is an enigmatic ligand-operated chaperone involved in many important biological processes, and its functions are not fully understood yet. Herein, we developed a novel series of bitopic S1R ligands as versatile tools to investigate binding processes, allosteric modulation, and the oligomerization mechanism. These molecules have been prepared in the enantiopure form and subjected to a preliminary biological evaluation, while in silico investigations helped to rationalize the results. Compound 7 emerged as the first bitopic S1R ligand endowed with low nanomolar affinity (Ki = 2.6 nM) reported thus far. Computational analyses suggested that 7 may stabilize the open conformation of the S1R by simultaneously binding the occluded primary binding site and a peripheral site on the cytosol-exposed surface. These findings pave the way to new S1R ligands with enhanced activity and/or selectivity, which could also be used as probes for the identification of a potential allosteric site.


Assuntos
Encéfalo/metabolismo , Receptores sigma/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Cobaias , Ligantes , Estrutura Molecular , Neuritos/metabolismo , Células PC12 , Ratos , Receptores sigma/química , Relação Estrutura-Atividade , Receptor Sigma-1
7.
Front Mol Biosci ; 8: 701477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277709

RESUMO

Mass spectrometry-based proteomics methods are widely used to identify and quantify protein complexes involved in diverse biological processes. Specifically, tandem mass spectrometry methods represent an accurate and sensitive strategy for identifying protein-protein interactions. However, most of these approaches provide only lists of peptide fragments associated with a target protein, without performing further analyses to discriminate physical or functional protein-protein interactions. Here, we present the PPI-MASS web server, which provides an interactive analytics platform to identify protein-protein interactions with pharmacological potential by filtering a large protein set according to different biological features. Starting from a list of proteins detected by MS-based methods, PPI-MASS integrates an automatized pipeline to obtain information of each protein from freely accessible databases. The collected data include protein sequence, functional and structural properties, associated pathologies and drugs, as well as location and expression in human tissues. Based on this information, users can manipulate different filters in the web platform to identify candidate proteins to establish physical contacts with a target protein. Thus, our server offers a simple but powerful tool to detect novel protein-protein interactions, avoiding tedious and time-consuming data postprocessing. To test the web server, we employed the interactome of the TRPM4 and TMPRSS11a proteins as a use case. From these data, protein-protein interactions were identified, which have been validated through biochemical and bioinformatic studies. Accordingly, our web platform provides a comprehensive and complementary tool for identifying protein-protein complexes assisting the future design of associated therapies.

8.
FASEB J ; 35(5): e21597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908663

RESUMO

Aging is a gradual biological process characterized by a decrease in cellular and organism functions. Aging-related processes involve changes in the expression and activity of several proteins. Here, we identified the transmembrane protease serine 11a (TMPRSS11a) as a new age-specific protein that plays an important role in skin wound healing. TMPRSS11a levels increased with age in rodent and human skin and gingival samples. Strikingly, overexpression of TMPRSS11a decreased cell migration and spreading, and inducing cellular senescence. Mass spectrometry, bioinformatics, and functional analyses revealed that TMPRSS11a interacts with integrin ß1 through an RGD sequence contained within the C-terminal domain and that this motif was relevant for cell migration. Moreover, TMPRSS11a was associated with cellular senescence, as shown by overexpression and downregulation experiments. In agreement with tissue-specific expression of TMPRSS11a, shRNA-mediated downregulation of this protein improved wound healing in the skin, but not in the skeletal muscle of old mice, where TMPRSS11a is undetectable. Collectively, these findings indicate that TMPRSS11a is a tissue-specific factor relevant for wound healing, which becomes elevated with aging, promoting cellular senescence and inhibiting cell migration and skin repair.


Assuntos
Envelhecimento/patologia , Movimento Celular , Fibroblastos/patologia , Proteínas de Membrana/metabolismo , Serina Proteases/metabolismo , Pele/patologia , Cicatrização , Adolescente , Adulto , Idoso , Envelhecimento/metabolismo , Animais , Proliferação de Células , Fibroblastos/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Serina Proteases/genética , Transdução de Sinais , Pele/metabolismo , Adulto Jovem
9.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803858

RESUMO

Beta glucans are known to have immunomodulatory effects that mediated by a variety of mechanisms. In this article, we describe experiments and simulations suggesting that beta-1,3 glucans may promote activation of T cells by a previously unknown mechanism. First, we find that treatment of a T lymphoblast cell line with beta-1,3 oligoglucan significantly increases mRNA levels of T cell activation-associated cytokines, especially in the presence of the agonistic anti-CD3 antibody. This immunostimulatory activity was observed in the absence of dectin-1, a known receptor for beta-1,3 glucans. To clarify the molecular mechanism underlying this activity, we performed a series of molecular dynamics simulations and free-energy calculations to explore the interaction of beta-1,3 oligoglucans with potential immune receptors. While the simulations reveal little association between beta-1,3 oligoglucan and the immune receptor CD3, we find that beta-1,3 oligoglucans bind to CD28 near the region identified as the binding site for its natural ligands CD80 and CD86. Using a rigorous absolute binding free-energy technique, we calculate a dissociation constant in the low millimolar range for binding of 8-mer beta-1,3 oligoglucan to this site on CD28. The simulations show this binding to be specific, as no such association is computed for alpha-1,4 oligoglucan. This study suggests that beta-1,3 glucans bind to CD28 and may stimulate T cell activation collaboratively with T cell receptor activation, thereby stimulating immune function.


Assuntos
Antígenos CD28/metabolismo , Ativação Linfocitária/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T/imunologia , beta-Glucanas/metabolismo , Antígenos CD28/química , Citocinas/metabolismo , Humanos , Células Jurkat , Modelos Moleculares , Ligação Proteica , Receptores Imunológicos/química , Termodinâmica , beta-Glucanas/química
10.
J Chem Inf Model ; 60(7): 3577-3586, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32525311

RESUMO

Dopamine clearance in the brain is controlled by the dopamine transporter (DAT), a protein residing in the plasma membrane, which drives reuptake of extracellular dopamine into presynaptic neurons. Studies have revealed that the ßγ subunits of heterotrimeric G proteins modulate DAT function through a physical association with the C-terminal region of the transporter. Regulation of neurotransmitter transporters by Gßγ subunits is unprecedented in the literature; therefore, it is interesting to investigate the structural details of this particular protein-protein interaction. Here, we refined the crystal structure of the Drosophila melanogaster DAT (dDAT), modeling de novo the N- and C-terminal domains; subsequently, we used the full-length dDAT structure to generate a comparative model of human DAT (hDAT). Both proteins were assembled with Gß1γ2 subunits employing protein-protein docking, and subsequent molecular dynamics simulations were run to identify the specific interactions governing the formation of the hDAT:Gßγ and dDAT:Gßγ complexes. A [L/F]R[Q/E]R sequence motif containing the residues R588 in hDAT and R587 in dDAT was found as key to bind the Gßγ subunits through electrostatic interactions with a cluster of negatively charged residues located at the top face of the Gß subunit. Alterations of DAT function have been associated with multiple devastating neuropathological conditions; therefore, this work represents a step toward better understanding DAT regulation by signaling proteins, allowing us to predict therapeutic target regions.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas de Drosophila/química , Drosophila melanogaster , Proteínas de Ligação ao GTP/química , Animais , Dopamina , Drosophila melanogaster/metabolismo , Simulação de Dinâmica Molecular
11.
FASEB J ; 34(6): 7847-7865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301552

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Canais de Potássio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Mama/metabolismo , Mama/patologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Células MCF-7 , Prognóstico , Ubiquitina-Proteína Ligases/metabolismo
12.
J Biol Chem ; 295(8): 2285-2298, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31949048

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a ligand of low-density lipoprotein (LDL) receptor (LDLR) that promotes LDLR degradation in late endosomes/lysosomes. In human plasma, 30-40% of PCSK9 is bound to LDL particles; however, the physiological significance of this interaction remains unknown. LDL binding in vitro requires a disordered N-terminal region in PCSK9's prodomain. Here, we report that peptides corresponding to a predicted amphipathic α-helix in the prodomain N terminus adopt helical structure in a membrane-mimetic environment. This effect was greatly enhanced by an R46L substitution representing an atheroprotective PCSK9 loss-of-function mutation. A helix-disrupting proline substitution within the putative α-helical motif in full-length PCSK9 lowered LDL binding affinity >5-fold. Modeling studies suggested that the transient α-helix aligns multiple polar residues to interact with positively charged residues in the C-terminal domain. Gain-of-function PCSK9 mutations associated with familial hypercholesterolemia (FH) and clustered at the predicted interdomain interface (R469W, R496W, and F515L) inhibited LDL binding, which was completely abolished in the case of the R496W variant. These findings shed light on allosteric conformational changes in PCSK9 required for high-affinity binding to LDL particles. Moreover, the initial identification of FH-associated mutations that diminish PCSK9's ability to bind LDL reported here supports the notion that PCSK9-LDL association in the circulation inhibits PCSK9 activity.


Assuntos
Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Substituição de Aminoácidos , Células HEK293 , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação/genética , Peptídeos/metabolismo , Prolina/genética , Pró-Proteína Convertase 9/genética , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de LDL/metabolismo , Relação Estrutura-Atividade , Tirosina/metabolismo
13.
J Chem Inf Model ; 60(2): 756-765, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31809025

RESUMO

Significant progresses have been made to understand the molecular basis of the Sigma1 receptor (S1R) operating in normal and pathological conditions. S1R is a transmembrane protein that participates in a wide variety of processes at the central nervous system; hence, its function has been associated with mental and neurological disorders. Several ligands have been proposed to regulate the function of S1R revealing a high plasticity of the ligand-binding pocket. Previous drug-design studies have been mainly based on pharmacophore models; however, the recently revealed crystal structure of S1R provides an excellent opportunity for verifying previous predictions and for evaluating the binding of novel compounds. Interestingly, the crystal structure shows that the binding pocket of S1R is highly occluded from solvent; therefore, it is not clear how ligands access this site. In the present work, we applied steered molecular dynamics (SMD) simulations to open the occluded ligand-binding pocket in the S1R crystal structure and to determine the preferred ligand pathway to enter and exit the binding site. The intracellular surface of the ß-barrel ligand-binding region was found the most favorable route to accommodate ligands. This route supports the binding of RC-33 (our in-house-developed S1R modulator) and a new bivalent derivative that constitutes the first divalent structure shown to interact with S1R. Free energy calculations of these compounds associated with S1R agree with experimental Ki values and provide molecular insights of the binding mode of modulators that could access the S1R ligand-binding pocket through the cytoplasmic region.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Simulação de Dinâmica Molecular , Piperidinas/química , Piperidinas/metabolismo , Receptores sigma/química , Receptores sigma/metabolismo , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
15.
BMC Plant Biol ; 19(1): 316, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307394

RESUMO

BACKGROUND: HKT channels mediate sodium uniport or sodium and potassium symport in plants. Monocotyledons express a higher number of HKT proteins than dicotyledons, and it is only within this clade of HKT channels that cation symport mechanisms are found. The prevailing ion composition in the extracellular medium affects the transport abilities of various HKT channels by changing their selectivity or ion transport rates. How this mutual effect is achieved at the molecular level is still unknown. Here, we built a homology model of the monocotyledonous OsHKT2;2, which shows sodium and potassium symport activity. We performed molecular dynamics simulations in the presence of sodium and potassium ions to investigate the mutual effect of cation species. RESULTS: By analyzing ion-protein interactions, we identified a cation coordination site on the extracellular protein surface, which is formed by residues P71, D75, D501 and K504. Proline and the two aspartate residues coordinate cations, while K504 forms salt bridges with D75 and D501 and may be involved in the forwarding of cations towards the pore entrance. Functional validation via electrophysiological experiments confirmed the biological relevance of the predicted ion coordination site and identified K504 as a central key residue. Mutation of the cation coordinating residues affected the functionality of HKT only slightly. Additional in silico mutants and simulations of K504 supported experimental results. CONCLUSION: We identified an extracellular cation coordination site, which is involved in ion coordination and influences the conduction of OsHKT2;2. This finding proposes a new viewpoint in the discussion of how the mutual effect of variable ion species may be achieved in HKT channels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , Clonagem Molecular , Eletrofisiologia , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Relação Estrutura-Atividade , Xenopus laevis
16.
Biophys J ; 117(2): 377-387, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278002

RESUMO

After opening, the Shaker voltage-gated potassium (KV) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid α-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of KV channels to the inactivated state.


Assuntos
Ativação do Canal Iônico , Modelos Moleculares , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Aminoácidos/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Termodinâmica
17.
FASEB J ; 33(8): 9434-9452, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112396

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective cationic channel involved in a wide variety of physiologic and pathophysiological processes. Bioinformatics analyses of the primary sequence of TRPM4 allowed us to identify a putative motif for interaction with end-binding (EB) proteins, which are microtubule plus-end tracking proteins. Here, we provide novel data suggesting that TRPM4 interacts with EB proteins. We show that mutations of the putative EB binding motif abolish the TRPM4-EB interaction, leading to a reduced expression of the mature population of the plasma membrane channel and instead display an endoplasmic reticulum-associated distribution. Furthermore, we demonstrate that EB1 and EB2 proteins are required for TRPM4 trafficking and functional activity. Finally, we demonstrated that the expression of a soluble fragment containing the EB binding motif of TRPM4 reduces the plasma membrane expression of the channel and affects TRPM4-dependent focal adhesion disassembly and cell invasion processes.-Blanco, C., Morales, D., Mogollones, I., Vergara-Jaque, A., Vargas, C., Álvarez, A., Riquelme, D., Leiva-Salcedo, E., González, W., Morales, D., Maureira, D., Aldunate, I., Cáceres, M., Varela, D., Cerda, O. EB1- and EB2-dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion.


Assuntos
Adesões Focais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Biotinilação/fisiologia , Células COS , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Chlorocebus aethiops , Eletrofisiologia , Imunofluorescência , Humanos , Immunoblotting , Proteínas Associadas aos Microtúbulos/genética , Simulação de Dinâmica Molecular , Mutação/genética , Plasmídeos/genética , Canais de Cátion TRPM/genética
18.
Food Chem ; 265: 159-164, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29884367

RESUMO

Ochratoxin A (OTA) is a mycotoxin produced by filamentous-type fungi that contaminates a wide variety of foods and beverages such as wines. In these trials, we evaluated the capacity of the following polymers for the removal of OTA from acidic model solutions and red wine: polyvinylpolypyrrolidone (PVPP), resin of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate (PVP-DEGMA-TAIC), and poly(acrylamide-co-ethylene glycol-dimethacrylate) (PA-EGDMA). In acidic model solution, PVP-DEGMA-TAIC and PA-EGDMA polymers removed up to 99.9% of OTA, but their trapping capacity was highly reduced by the presence of competing phenolic substances (i.e. gallic acid and 4-methylcathecol). In real red wine, PA-EGDMA polymer showed the most promising results, with more than 68.0% OTA removal and less than 14.0% reduction in total phenolic. Finally, computational chemistry analyses showed that the affinity between OTA and the polymers studied would be due to Van der Waals interactions.


Assuntos
Ocratoxinas/isolamento & purificação , Polímeros/química , Vinho , Resinas Acrílicas/química , Contaminação de Alimentos , Metacrilatos/química , Modelos Químicos , Fenóis/química , Povidona/análogos & derivados , Povidona/química , Vinho/análise
19.
J Comput Chem ; 39(16): 986-992, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29399821

RESUMO

Protein kinases (PKs) discriminate between closely related sequences that contain serine, threonine, and/or tyrosine residues. Such specificity is defined by the amino acid sequence surrounding the phosphorylatable residue, so that it is possible to identify an optimal recognition motif (ORM) for each PK. The ORM for the protein kinase A (PKA), a well-known member of the PK family, is the sequence RRX(S/T)X, where arginines at the -3 and -2 positions play a key role with respect to the primed phosphorylation site. In this work, differential affinities of PKA for the peptide substrate Kemptide (LRRASLG) and mutants that substitute the arginine residues by the unnatural peptide homoarginine were evaluated through molecular dynamics (MD) and free energy perturbation (FEP) calculations. The FEP study for the homoarginine mutants required previous elaboration of a CHARMM "arginine to homoarginine" (R2B) hybrid topology file which is available in this manuscript as Supporting Information. Mutants substituting the arginine residues by alanine, lysine, and histidine were also considered in the comparison by using the same protocol. FEP calculations allowed estimating the free energy changes from the free PKA to PKA-substrate complex (ΔΔGE→ES ) when Kemptide structure was mutated. Both ΔΔGS→ES values for homoarginine mutants were predicted with a difference below 1 kcal/mol. In addition, FEP correctly predicted that all the studied mutations decrease the catalytic efficiency of Kemptide for PKA. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homoarginina/química , Oligopeptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Teoria Quântica , Termodinâmica
20.
J Chem Inf Model ; 57(12): 3043-3055, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29131623

RESUMO

Several apical iodide translocation pathways have been proposed for iodide efflux out of thyroid follicular cells, including a pathway mediated by the sodium-coupled monocarboxylate transporter 1 (SMCT1), which remains controversial. Herein, we evaluate structural and functional similarities between SMCT1 and the well-studied sodium-iodide symporter (NIS) that mediates the first step of iodide entry into the thyroid. Free-energy calculations using a force field with electronic polarizability verify the presence of a conserved iodide-binding pocket between the TM2, TM3, and TM7 segments in hNIS, where iodide is coordinated by Phe67, Gln72, Cys91, and Gln94. We demonstrate the mutation of residue Gly93 of hNIS to a larger amino acid expels the side chain of a critical tryptophan residue (Trp255) into the interior of the binding pocket, partially occluding the iodide binding site and reducing iodide affinity, which is consistent with previous reports associating mutation of this residue with iodide uptake deficiency and hypothyroidism. Furthermore, we find that the position of Trp255 in this hNIS mutant mirrors that of Trp253 in wild-type hSMCT1, where a threonine (Thr91) occupies the position homologous to that occupied by glycine in wild-type hNIS (Gly93). Correspondingly, mutation of Thr91 to glycine in hSMCT1 makes the pocket structure more like that of wild-type hNIS, increasing its iodide affinity. These results suggest that wild-type hSMCT1 in the inward-facing conformation may bind iodide only very weakly, which may have implications for its ability to transport iodide.


Assuntos
Iodetos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Humanos , Iodetos/química , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química , Ligação Proteica , Conformação Proteica , Simportadores/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA