Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171214, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408672

RESUMO

In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 µg·kg-1 - 10 µg·kg-1) were obtained, with the exception of norfloxacin (34 µg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.


Assuntos
Anti-Infecciosos , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Espectrometria de Massas em Tandem , Poluentes do Solo/análise , Anti-Infecciosos/toxicidade , Anti-Infecciosos/metabolismo , Sulfametazina/análise , Antibacterianos/farmacologia , Solo/química , Tetraciclina/análise
2.
Food Chem ; 444: 138643, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38340504

RESUMO

This work provided an accurate analytical method to perform a multitarget analysis of a variety of antimicrobials (AMs) including sulfonamides, tetracyclines, macrolides, fluoroquinolones and quinolones, one imidazole and one nitroimidazole, one triazole, one diaminopyridine and one derivative of Penicillium stoloniferum in vegetables. The analysis is performed using liquid-chromatography coupled to a low-resolution triple quadrupole mass spectrometer (UHPLC-MS/MS) to detect the target analytesor coupled to a high-resolution q-Orbitrap (HRMS) to monitor the formed transformation products (TPs). Both instruments were compared in terms of limits of quantification and matrix effect at the detection. The method was applied to determine the presence of AMs in organic and non-organic vegetables, where sulfadiazine and mycophenolic acid were detected. On the other hand, the transference of four AMs (trimethoprim, sulfamethazine, enrofloxacin, and chlortetracycline) from soils to lettuces was evaluated through controlled uptake experiments. The choice of AMs was based on the classification into different families, and on the fact that those AM families are the most frequently detected in the environment. In this case, each of the AMs with which the soils were contaminated were found in the exposed lettuces. Moreover, in both studies, specific TPs of the AMs were identified, posing the necessity of assessing their effects in relation to food and human safety.


Assuntos
Espectrometria de Massas em Tandem , Verduras , Humanos , Espectrometria de Massas em Tandem/métodos , Verduras/química , Cromatografia Líquida/métodos , Antibacterianos , Solo , Cromatografia Líquida de Alta Pressão/métodos
3.
Anal Bioanal Chem ; 415(25): 6291-6310, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610438

RESUMO

The present work aimed to develop an accurate analytical method for the simultaneous analysis of twenty-four antimicrobials in soil:compost and animal manure samples by means of ultra-high performance liquid chromatography coupled to a triple-quadrupole mass spectrometer (UHPLC-QqQ). For this purpose, the effectiveness of two extraction techniques (i.e. focused ultrasound solid-liquid extraction (FUSLE) and QuEChERS (quick, easy, cheap, effective, rugged and safe)) was evaluated, and the clean-up step using solid-phase extraction (SPE) was also thoroughly studied. The method was successfully validated at 10 µg·kg-1, 25 µg·kg-1, and 50 µg·kg-1 showing adequate trueness (70-130%) and repeatability (RSD < 30%), with few exceptions. Procedural limits of quantification (LOQPRO) were determined for soil:compost (0.45 to 7.50 µg·kg-1) and manure (0.31 to 5.53 µg·kg-1) samples. Pefloxacin could not be validated at the lowest level since LOQPRO ≥ 10 µg·kg-1. Sulfamethazine (7.9 ± 0.8 µg·kg-1), danofloxacin (27.1 ± 1.4 µg·kg-1) and trimethoprim (4.9 ± 0.5 µg·kg-1) were detected in soil samples; and tetracycline (56.8 ± 2.8 µg·kg-1), among other antimicrobials, in the plants grown on the surface of the studied soil samples. Similarly, sulfonamides (SAs), tetracyclines (TCs) and fluoroquinolones (FQs) were detected in sheep manure in a range of 1.7 ± 0.3 to 93.3 ± 6.8 µg·kg-1. Soil and manure samples were also analysed through UHPLC coupled to a high-resolution mass-spectrometer (UHPLC-qOrbitrap) in order to extend the multitarget method to suspect screening of more than 22,281 suspects. A specific transformation product (TP) of sulfamethazine (formyl-sulfamethazine) was annotated at 2a level in manure samples, among others. This work contributes to the efforts that have been made in the last decade to develop analytical methods that allow multitarget analysis of a wide variety of antimicrobials, including TPs, which is a complex task due to the diverse physicochemical properties of the antimicrobials.

4.
Talanta ; 254: 124192, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527910

RESUMO

The extensive use of antibiotics in agriculture has led to the occurrence of residual drugs in different vegetables frequently consumed by humans. This could pose a potential threat to human health, not only because of the possible effects after ingestion but also because the transmission of antibiotic-resistant genes could occur. In this work, two accurate sample preparation procedures were developed and validated for the simultaneous analysis of sulfonamides (SAs) and tetracyclines (TCs) in four of the most widely consumed vegetables (lettuce, onion, tomato, and carrot) in Europe. The evaluated protocols were based on QuECHERS for extraction and subsequent clean-up by SPE (solid phase extraction) or dispersive SPE. Parameters affecting both extraction and clean-up were carefully evaluated and selected for accuracy of results and minimal matrix effect. Overall, apparent recoveries were above 70% for most of the target analytes with both analytical procedures, and adequate precision (RSD<30%) was obtained for all the matrices. The procedural limits of quantification (LOQPRO) values for SPE clean-up remained below 4.4 µg kg-1 for TCs in all vegetables except for chlortetracycline (CTC) in lettuce (11.3 µg kg-1) and 3.0 µg kg-1 for SAs, with the exception of sulfadiazine (SDZ) in onion (3.9 µg kg-1) and sulfathiazole (STZ) in carrot (5.0 µg kg-1). Lower LOQPRO values (0.1-3.7 µg kg-1) were obtained, in general, when dSPE clean-up was employed. Both methods were applied to twenty-five market vegetable samples from ecological and conventional agriculture and only sulfamethazine (SMZ) and sulfapyridine (SPD) were detected in lettuce at 1.2 µg kg-1 and 0.5 µg kg-1, respectively.


Assuntos
Sulfonamidas , Verduras , Humanos , Sulfonamidas/análise , Tetraciclinas/análise , Antibacterianos/análise , Sulfanilamida/análise , Lactuca , Cebolas , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA