Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 12675, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542099

RESUMO

Intrinsic or added immune activating molecules are key for most vaccines to provide desired immunity profiles but may increase systemic reactogenicity. Regulatory agencies require rabbit pyrogen testing (RPT) for demonstration of vaccine reactogenicity. Recently, the monocyte activation test (MAT) gained popularity as in vitro alternative, yet this assay was primarily designed to test pyrogen-free products. The aim was to adjust the MAT to enable testing of pyrogen containing vaccines in an early stage of development where no reference batch is yet available. The MAT and RPT were compared for assessing unknown safety profiles of pertussis outer membrane vesicle (OMV) vaccine candidates to those of Bexsero as surrogate reference vaccine. Pertussis OMVs with wild-type LPS predominantly activated TLR2 and TLR4 and were more reactogenic than Bexsero. However, this reactogenicity profile for pertussis OMVs could be equalized or drastically reduced compared to Bexsero or a whole-cell pertussis vaccine, respectively by dose changing, modifying the LPS, intranasal administration, or a combination of these. Importantly, except for LPS modified products, reactogenicity profiles obtained with the RPT and MAT were comparable. Overall, we demonstrated that this pertussis OMV vaccine candidate has an acceptable safety profile. Furthermore, the MAT proved its applicability to assess reactogenicity levels of pyrogen containing vaccines at multiple stages of vaccine development and could eventually replace rabbit pyrogen testing.


Assuntos
Lipopolissacarídeos , Coqueluche , Animais , Coelhos , Lipopolissacarídeos/farmacologia , Pirogênios , Monócitos , Bioensaio
3.
BMC Biol ; 19(1): 12, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482803

RESUMO

BACKGROUND: Pandemics, even more than other medical problems, require swift integration of knowledge. When caused by a new virus, understanding the underlying biology may help finding solutions. In a setting where there are a large number of loosely related projects and initiatives, we need common ground, also known as a "commons." Wikidata, a public knowledge graph aligned with Wikipedia, is such a commons and uses unique identifiers to link knowledge in other knowledge bases. However, Wikidata may not always have the right schema for the urgent questions. In this paper, we address this problem by showing how a data schema required for the integration can be modeled with entity schemas represented by Shape Expressions. RESULTS: As a telling example, we describe the process of aligning resources on the genomes and proteomes of the SARS-CoV-2 virus and related viruses as well as how Shape Expressions can be defined for Wikidata to model the knowledge, helping others studying the SARS-CoV-2 pandemic. How this model can be used to make data between various resources interoperable is demonstrated by integrating data from NCBI (National Center for Biotechnology Information) Taxonomy, NCBI Genes, UniProt, and WikiPathways. Based on that model, a set of automated applications or bots were written for regular updates of these sources in Wikidata and added to a platform for automatically running these updates. CONCLUSIONS: Although this workflow is developed and applied in the context of the COVID-19 pandemic, to demonstrate its broader applicability it was also applied to other human coronaviruses (MERS, SARS, human coronavirus NL63, human coronavirus 229E, human coronavirus HKU1, human coronavirus OC4).


Assuntos
COVID-19/patologia , Genômica/métodos , Bases de Conhecimento , Proteômica/métodos , SARS-CoV-2/fisiologia , COVID-19/metabolismo , COVID-19/virologia , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Internet , Pandemias , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fluxo de Trabalho
4.
Vaccines (Basel) ; 8(3)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751680

RESUMO

The limited protective immunity induced by acellular pertussis vaccines demands development of novel vaccines that induce broader and longer-lived immunity. In this study, we investigated the protective capacity of outer membrane vesicle pertussis vaccines (omvPV) with different antigenic composition in mice to gain insight into which antigens contribute to protection. We showed that total depletion of virulence factors (bvg(-) mode) in omvPV led to diminished protection despite the presence of high antibody levels. Antibody profiling revealed overlap in humoral responses induced by vaccines in bvg(-) and bvg(+) mode, but the potentially protective responses in the bvg(+) vaccine were mainly directed against virulence-associated outer membrane proteins (virOMPs) such as BrkA and Vag8. However, deletion of either BrkA or Vag8 in our outer membrane vesicle vaccines did not affect the level of protection. In addition, the vaccine-induced immunity profile, which encompasses broad antibody and mixed T-helper 1, 2 and 17 responses, was not changed. We conclude that the presence of multiple virOMPs in omvPV is crucial for protection against Bordetella pertussis. This protective immunity does not depend on individual proteins, as their absence or low abundance can be compensated for by other virOMPs.

5.
Part Fibre Toxicol ; 15(1): 9, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382351

RESUMO

BACKGROUND: The use of engineered nanoparticles (NP) is widespread and still increasing. There is a great need to assess their safety. Newly engineered NP enter the market in a large variety; therefore safety evaluation should preferably be in a high-throughput fashion. In vitro screening is suitable for this purpose. TiO 2 NP exist in a large variety (crystal structure, coating and size), but information on their relative toxicities is scarce. TiO 2 NP may be inhaled by workers in e.g. paint production and application. In mice, inhalation of TiO 2 NP increases allergic reactions. Dendritic cells (DC) form an important part of the lung immune system, and are essential in adjuvant activity. The present study aimed to establish the effect of a variety of TiO 2 NP on DC maturation in vitro. Two NP of different crystal structure but similar in size, uncoated and from the same supplier, were evaluated for their adjuvant activity in vivo. METHODS: Immature DC were differentiated in vitro from human peripheral blood monocytes. Exposure effects of a series of fourteen TiO 2 NP on cell viability, CD83 and CD86 expression, and IL-12p40 and TNF-α production were measured. BALB/c mice were intranasally sensitized with ovalbumin (OVA) alone, OVA plus anatase TiO 2 NP, OVA plus rutile TiO 2 NP, and OVA plus Carbon Black (CB; positive control). The mice were intranasally challenged with OVA. OVA-specific IgE and IgG1 in serum, cellular inflammation in bronchoalveolar lavage fluid (BALF) and IL-4 and IL-5 production in draining bronchial lymph nodes were evaluated. RESULTS: All NP dispersions contained NP aggregates. The anatase NP and anatase/rutile mixture NP induced a higher CD83 and CD86 expression and a higher IL-12p40 production in vitro than the rutile NP (including coated rutile NP and a rutile NP of a 10-fold larger primary diameter). OVA-specific serum IgE and IgG1 were increased by anatase NP, rutile NP, and CB, in the order rutile

Assuntos
Células Dendríticas/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cristalização , Células Dendríticas/imunologia , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Interleucina-4/imunologia , Interleucina-5/imunologia , Pulmão/imunologia , Camundongos Endogâmicos BALB C , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície , Titânio/química
6.
Vaccine ; 35(8): 1152-1160, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28129894

RESUMO

Detoxified pertussis toxin (pertussis toxoid) is a major antigen in acellular pertussis vaccines. Testing these vaccines on the presence of residual pertussis toxin (PTx) and reversion to toxicity is performed by the regulatory required in vivo Histamine Sensitization test (HIST). Lack of mechanistic understanding of the HIST, technical handicaps and animal welfare concerns, have promoted the development of alternative methods. As the majority of the cellular effects of PTx depend on its ability to activate intracellular pathways involving cAMP, the in vitro cAMP-PTx assay was developed. Although this assay could be used to detect PTx activity, it lacked sensitivity and robustness for use in a quality control setting. In the present study, novel reporter cell lines (CHO-CRE and A10-CRE) were generated that stably express a reporter construct responsive to changes in intracellular cAMP levels. These reporter cell lines were able to detect PTx in a concentration-dependent manner when combined with fixed amounts of forskolin. The CHO-CRE cell line enabled detection of PTx in the context of a multivalent vaccine containing aP, with a sensitivity equal to the HIST. However, the sensitivity of the A10-CRE cells was insufficient for this purpose. The experiments also suggest that the CHO-CRE reporter cell line might be suitable for assessment of cellular effects of PTd reverted to PTx. The CHO-CRE reporter cell line provides a platform that meets the criteria for specificity and sensitivity and is a promising in vitro model with potential to replace the HIST.


Assuntos
Bioensaio , Efeito Fundador , Toxina Pertussis/análise , Vacina contra Coqueluche/química , Elementos de Resposta , Animais , Células CHO , Linhagem Celular , Colforsina/farmacologia , Cricetulus , AMP Cíclico/metabolismo , Genes Reporter , Histamina/metabolismo , Histamina/farmacologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Vacina contra Coqueluche/análise , Ratos , Sensibilidade e Especificidade , Vacinas Acelulares
7.
PLoS One ; 11(8): e0161428, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27548265

RESUMO

The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including such parameters to assess consistency of newly produced vaccines could bring in vitro testing of vaccine quality a step closer.


Assuntos
Proteínas de Bactérias/imunologia , Bordetella pertussis/imunologia , Células Dendríticas/imunologia , Monócitos/imunologia , Vacina contra Coqueluche/farmacologia , Receptor 4 Toll-Like/imunologia , Transativadores/imunologia , Apresentação de Antígeno , Proteínas de Bactérias/genética , Bioensaio , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Sequência de Carboidratos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/microbiologia , Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Lipopolissacarídeos/farmacologia , Sulfato de Magnésio/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Transativadores/genética , Transfecção , Transgenes , Vacinas Atenuadas , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Coqueluche/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA