Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(2): 309-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212586

RESUMO

The nervous system uses fast- and slow-adapting sensory detectors in parallel to enable neuronal representations of external states and their temporal dynamics. It is unknown whether this dichotomy also applies to internal representations that have no direct correlation in the physical world. Here we find that two distinct dopamine (DA) neuron subtypes encode either a state or its rate-of-change. In mice performing a reward-seeking task, we found that the animal's behavioral state and rate-of-change were encoded by the sustained activity of DA neurons in medial ventral tegmental area (VTA) DA neurons and transient activity in lateral VTA DA neurons, respectively. The neural activity patterns of VTA DA cell bodies matched DA release patterns within anatomically defined mesoaccumbal pathways. Based on these results, we propose a model in which the DA system uses two parallel lines for proportional-differential encoding of a state variable and its temporal dynamics.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Camundongos , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia
2.
Elife ; 122023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922198

RESUMO

The peer review process is a critical step in ensuring the quality of scientific research. However, its subjectivity has raised concerns. To investigate this issue, I examined over 500 publicly available peer review reports from 200 published neuroscience papers in 2022-2023. OpenAI's generative artificial intelligence ChatGPT was used to analyze language use in these reports, which demonstrated superior performance compared to traditional lexicon- and rule-based language models. As expected, most reviews for these published papers were seen as favorable by ChatGPT (89.8% of reviews), and language use was mostly polite (99.8% of reviews). However, this analysis also demonstrated high levels of variability in how each reviewer scored the same paper, indicating the presence of subjectivity in the peer review process. The results further revealed that female first authors received less polite reviews than their male peers, indicating a gender bias in reviewing. In addition, published papers with a female senior author received more favorable reviews than papers with a male senior author, for which I discuss potential causes. Together, this study highlights the potential of generative artificial intelligence in performing natural language processing of specialized scientific texts. As a proof of concept, I show that ChatGPT can identify areas of concern in scientific peer review, underscoring the importance of transparent peer review in studying equitability in scientific publishing.


Peer review is a vital step in ensuring the quality and accuracy of scientific research before publication. Experts assess research manuscripts, advise journal editors on publishing them, and provide authors with recommendations for improvement. But some scientists have raised concerns about potential biases and subjectivity in the peer review process. Author attributes, such as gender, reputation, or how prestigious their institution is, may subconsciously influence reviewers' scores. Studying peer review to identify potential biases is challenging. The language reviewers use is very technical, and some of their commentary may be subjective and vary from reviewer to reviewer. The emergence of OpenAI's ChatGPT, which uses machine learning to process large amounts of information, may provide a new tool to analyze peer review for signs of bias. Verharen demonstrated that ChatGPT can be used to analyze peer review reports and found potential indications of gender bias in scientific publishing. In the experiments, Verharen asked ChatGPT to analyze more than 500 reviews of 200 neuroscience studies published in the scientific journal Nature Communications over the past year. The experiments found no evidence that institutional reputation influenced reviews. Yet, female first authors were more likely to receive impolite comments from reviewers. Female senior authors were more likely to receive higher review scores, which may indicate they had to clear a higher bar for publication. The experiments indicate that ChatGPT could be used to analyze peer review for fairness. Verharen suggests that reviewers might apply this tool to ensure their reviews are polite and accurate reflections of their opinions. Scientists or publishers might also use it for large-scale analyses of peer review in individual journals or in scientific publishing more widely. Journals might also use ChatGPT to assess the impact of bias-prevention interventions on review fairness.


Assuntos
Inteligência Artificial , Editoração , Feminino , Masculino , Humanos , Sexismo , Revisão por Pares , Relatório de Pesquisa
3.
Nat Commun ; 14(1): 2419, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105954

RESUMO

The sucrose preference test (SPT) measures the relative preference of sucrose over water to assess hedonic behaviors in rodents. Yet, it remains uncertain to what extent the SPT reflects other behavioral components, such as learning, memory, motivation, and choice. Here, we conducted an experimental and computational decomposition of mouse behavior in the SPT and discovered previously unrecognized behavioral subcomponents associated with changes in sucrose preference. We show that acute and chronic stress have sex-dependent effects on sucrose preference, but anhedonia was observed only in response to chronic stress in male mice. Additionally, reduced sucrose preference induced by optogenetics is not always indicative of anhedonia but can also reflect learning deficits. Even small variations in experimental conditions influence behavior, task outcome and interpretation. Thus, an ostensibly simple behavioral task can entail high levels of complexity, demonstrating the need for careful dissection of behavior into its subcomponents when studying the underlying neurobiology.


Assuntos
Anedonia , Sacarose , Camundongos , Masculino , Animais , Sacarose/farmacologia , Motivação , Preferências Alimentares , Incerteza , Comportamento Animal
4.
J Neurosci ; 42(46): 8716-8728, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36253083

RESUMO

Sensory driven activity during early life is critical for setting up the proper connectivity of the sensory cortices. We ask here whether social play behavior, a particular form of social interaction that is highly abundant during postweaning development, is equally important for setting up connections in the developing prefrontal cortex (PFC). Young male rats were deprived from social play with peers during the period in life when social play behavior normally peaks [postnatal day 21-42] (SPD rats), followed by resocialization until adulthood. We recorded synaptic currents in layer 5 cells in slices from medial PFC of adult SPD and control rats and observed that inhibitory synaptic currents were reduced in SPD slices, while excitatory synaptic currents were unaffected. This was associated with a decrease in perisomatic inhibitory synapses from parvalbumin-positive GABAergic cells. In parallel experiments, adult SPD rats achieved more reversals in a probabilistic reversal learning (PRL) task, which depends on the integrity of the PFC, by using a more simplified cognitive strategy than controls. Interestingly, we observed that one daily hour of play during SPD partially rescued the behavioral performance in the PRL, but did not prevent the decrease in PFC inhibitory synaptic inputs. Our data demonstrate the importance of unrestricted social play for the development of inhibitory synapses in the PFC and cognitive skills in adulthood and show that specific synaptic alterations in the PFC can result in a complex behavioral outcome.SIGNIFICANCE STATEMENT This study addressed the question whether social play behavior in juvenile rats contributes to functional development of the prefrontal cortex (PFC). We found that rats that had been deprived from juvenile social play (social play deprivation - SPD) showed a reduction in inhibitory synapses in the PFC and a simplified strategy to solve a complex behavioral task in adulthood. Providing one daily hour of play during SPD partially rescued the cognitive skills in these rats, but did not prevent the reduction in PFC inhibitory synapses. Our results demonstrate a key role for unrestricted juvenile social play in PFC development and emphasize the complex relation between PFC circuit connectivity and cognitive function.


Assuntos
Córtex Pré-Frontal , Sinapses , Ratos , Masculino , Animais , Sinapses/metabolismo , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Cognição , Neurogênese
5.
Neuron ; 110(18): 3018-3035.e7, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35921846

RESUMO

Nicotine stimulates the dopamine (DA) system, which is essential for its rewarding effect. Nicotine is also aversive at high doses; yet, our knowledge about nicotine's dose-dependent effects on DA circuits remains limited. Here, we demonstrate that high doses of nicotine, which induce aversion-related behavior in mice, cause biphasic inhibitory and excitatory responses in VTA DA neurons that can be dissociated by distinct projections to lateral and medial nucleus accumben subregions, respectively. Guided by computational modeling, we performed a pharmacological investigation to establish that inhibitory effects of aversive nicotine involve desensitization of α4ß2 and activation of α7 nicotinic acetylcholine receptors. We identify α7-dependent activation of upstream GABA neurons in the laterodorsal tegmentum (LDT) as a key regulator of heterogeneous DA release following aversive nicotine. Finally, inhibition of LDT GABA terminals in VTA prevents nicotine aversion. Together, our findings provide a mechanistic circuit-level understanding of nicotine's dose-dependent effects on reward and aversion.


Assuntos
Nicotina , Receptores Nicotínicos , Animais , Dopamina/fisiologia , Neurônios Dopaminérgicos/metabolismo , Camundongos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/fisiologia , Receptor Nicotínico de Acetilcolina alfa7 , Ácido gama-Aminobutírico/farmacologia
6.
Psychopharmacology (Berl) ; 239(3): 745-764, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064798

RESUMO

RATIONALE: Infants born prematurely risk developing diffuse white matter injury (WMI), which is associated with impaired cognitive functioning and an increased risk of autism spectrum disorder. Recently, our rat model of preterm diffuse WMI induced by combined fetal inflammation and postnatal hypoxia showed impaired motor performance, anxiety-like behaviour and autism-like behaviour in juvenile rats, especially males. Immunohistochemistry showed delayed myelination in the sensory cortex and impaired oligodendrocyte differentiation. OBJECTIVE: To assess long-term cognitive deficits in this double-hit rat model of diffuse WMI, animals were screened on impulsivity, attention and cognitive flexibility in adulthood using the 5-choice serial reaction time task (5CSRTT) and a probabilistic reversal learning task, tests that require a proper functioning prefrontal cortex. Thereafter, myelination deficits were evaluated by immunofluorescent staining in adulthood. RESULTS: Overall, little effect of WMI or sex was found in the cognitive tasks. WMI animals showed subtle differences in performance in the 5CSRTT. Manipulating 5CSRTT parameters resulted in performance patterns previously seen in the literature. Sex differences were found in perseverative responses and omitted trials: female WMI rats seem to be less flexible in the 5CSRTT but not in the reversal learning task. Males collected rewards faster in the probabilistic reversal learning task. These findings are explained by temporally rather than permanently affected myelination and by the absence of extensive injury to prefrontal cortical subregions, confirmed by immunofluorescent staining in both adolescence and adulthood. CONCLUSION: This rat model of preterm WMI does not lead to long-term cognitive deficits as observed in prematurely born human infants.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Substância Branca , Animais , Cognição , Feminino , Hipóxia , Masculino , Ratos
7.
Neuron ; 105(6): 954-956, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32191856

RESUMO

In this issue of Neuron, Corkrum et al. (2020) demonstrate an unexpected role for dopamine D1 receptors on astrocytes located in the nucleus accumbens, a key structure of the brain's reward system. Activation of these receptors mediates dopamine-evoked depression of excitatory synaptic transmission, which contributes to amphetamine's psychomotor effects.


Assuntos
Dopamina , Núcleo Accumbens , Anfetamina , Astrócitos , Sinapses
8.
Psychopharmacology (Berl) ; 237(6): 1769-1782, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32221695

RESUMO

RATIONALE: Excessive intake of rewards, such as food and drugs, often has explicit negative consequences, including the development of obesity and addiction, respectively. Thus, choosing not to pursue reward is the result of a cost/benefit decision, proper execution of which requires inhibition of behavior. An extensive body of preclinical and clinical evidence implicates dopamine in certain forms of inhibition of behavior, but it is not fully known how it contributes to behavioral inhibition under threat of explicit punishment. OBJECTIVES: To assess the involvement of midbrain dopamine neurons and their corticostriatal output regions, the ventral striatum and prefrontal cortex, in control over behavior under threat of explicit (foot shock) punishment in rats. METHODS: We used a recently developed behavioral inhibition task, which assesses the ability of rats to exert behavioral restraint at the mere sight of food reward, under threat of foot shock punishment. Using in vivo fiber photometry, chemogenetics, c-Fos immunohistochemistry, and behavioral pharmacology, we investigated how dopamine neurons in the ventral tegmental area, as well as its output areas, the ventral striatum and prefrontal cortex, contribute to behavior in this task. RESULTS: Using this multidisciplinary approach, we found little evidence for a direct involvement of ascending midbrain dopamine neurons in inhibitory control over behavior under threat of punishment. For example, photometry recordings suggested that VTA DA neurons do not directly govern control over behavior in the task, as no differences were observed in neuronal population activity during successful versus unsuccessful behavioral control. In addition, chemogenetic and pharmacological manipulations of the mesocorticolimbic DA system had little or no effect on the animals' ability to exert inhibitory control over behavior. Rather, the dopamine system appeared to have a role in the motivational components of reward pursuit. CONCLUSIONS: Together, our data provide insight into the mesocorticolimbic mechanisms behind motivated behaviors by showing a modulatory role of dopamine in the expression of cost/benefit decisions. In contrast to our expectations, dopamine did not appear to directly mediate the type of behavioral control that is tested in our task.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Motivação/fisiologia , Punição/psicologia , Recompensa , Animais , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Motivação/efeitos dos fármacos , Fotometria/métodos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Long-Evans , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
9.
Psychopharmacology (Berl) ; 237(5): 1267-1280, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32025777

RESUMO

RATIONALE: During value-based decision-making, organisms make choices on the basis of reward expectations, which have been formed during prior action-outcome learning. Although it is known that neuronal manipulations of different subregions of the rat prefrontal cortex (PFC) have qualitatively different effects on behavioral tasks involving value-based decision-making, it is unclear how these regions contribute to the underlying component processes. OBJECTIVES: Assessing how different regions of the rodent PFC contribute to component processes of value-based decision-making behavior, including reward (or positive feedback) learning, punishment (or negative feedback) learning, response persistence, and exploration versus exploitation. METHODS: We performed behavioral modeling of data of rats in a probabilistic reversal learning task after pharmacological inactivation of five PFC subregions, to assess how inactivation of these different regions affected the structure of responding of animals in the task. RESULTS: Our results show reductions in reward and punishment learning after PFC subregion inactivation. The prelimbic, infralimbic, lateral orbital, and medial orbital PFC particularly contributed to punishment learning, and the prelimbic and lateral orbital PFC to reward learning. In addition, response persistence depended on the infralimbic and medial orbital PFC. As a result, pharmacological inactivation of the infralimbic and lateral orbitofrontal cortex reduced the number of reversals achieved, whereas inactivation of the prelimbic and medial orbitofrontal cortex decreased the number of rewards obtained. Finally, using simulated data, we explain discrepancies with a previous study and demonstrate complex, interacting relationships between conventional measures of probabilistic reversal learning performance, such as win-stay/lose-switch behavior, and component processes of value-based decision-making. CONCLUSIONS: Together, our data suggest that distinct components of value-based learning and decision-making are generated in medial and orbital PFC regions, displaying functional specialization and overlap, with a prominent role of large parts of the PFC in negative feedback processing.


Assuntos
Tomada de Decisões/fisiologia , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Recompensa , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Tomada de Decisões/efeitos dos fármacos , Agonistas GABAérgicos/administração & dosagem , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Long-Evans , Reversão de Aprendizagem/efeitos dos fármacos
10.
Neuroscientist ; 26(1): 87-99, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30866712

RESUMO

Processing rewarding and aversive signals lies at the core of many adaptive behaviors, including value-based decision making. The brain circuits processing these signals are widespread and include the prefrontal cortex, amygdala and striatum, and their dopaminergic innervation. In this review, we integrate historic findings on the behavioral and neural mechanisms of value-based decision making with recent, groundbreaking work in this area. On the basis of this integrated view, we discuss a neuroeconomic framework of value-based decision making, use this to explain the motivation to pursue rewards and how motivation relates to the costs and benefits associated with different courses of action. As such, we consider substance addiction and overeating as states of altered value-based decision making, in which the expectation of reward chronically outweighs the costs associated with substance use and food consumption, respectively. Together, this review aims to provide a concise and accessible overview of important literature on the neural mechanisms of behavioral adaptation to reward and aversion and how these mediate motivated behaviors.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Dopamina/metabolismo , Motivação/fisiologia , Recompensa , Animais , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-31262707

RESUMO

BACKGROUND: Patients with anorexia nervosa (AN) demonstrate aberrations in choice behavior, including impairments in laboratory measures of decision making. Although a wealth of studies suggest that these aberrations arise from alterations in value processing, it remains unclear by which core component of value processing this is mediated. METHODS: We fit trial-by-trial data of patients with AN (n = 60 first cohort, n = 216 second cohort) and healthy control participants (n = 55) performing the Iowa Gambling Task to a computational model based on prospect utility theory. We determined, per participant, the best-fit model parameters and compared these between the groups. RESULTS: Analyses revealed a decreased estimate of model parameter λ in patients with AN, indicative of an attenuation of loss-aversive behavior in the Iowa Gambling Task. In comparison, measures of reward sensitivity, value-based learning, and exploration versus exploitation were unaltered in patients with AN. A measurement in a second independent cohort replicated the finding that loss aversion, typically observed in healthy individuals, is reduced in patients with AN. CONCLUSIONS: We show that patients with AN, in contrast to healthy control participants, demonstrate reduced loss-aversive behavior. This finding provides important fundamental insights into the decision-making capacity of patients with AN, suggesting alterations in the mechanisms involved in value processing related to negative feedback.


Assuntos
Anorexia Nervosa/fisiopatologia , Tomada de Decisões/fisiologia , Recompensa , Adolescente , Adulto , Feminino , Humanos , Masculino , Modelos Teóricos , Adulto Jovem
12.
Neuropsychopharmacology ; 44(13): 2195-2204, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31254972

RESUMO

Dopamine has been implicated in value-based learning and decision making by signaling reward prediction errors and facilitating cognitive flexibility, incentive motivation, and voluntary movement. Dopamine receptors can roughly be divided into the D1 and D2 subtypes, and it has been hypothesized that these two types of receptors have an opposite function in facilitating reward-related and aversion-related behaviors, respectively. Here, we tested the contribution of striatal dopamine D1 and D2 receptors to processes underlying value-based learning and decision making in rats, employing a probabilistic reversal learning paradigm. Using computational trial-by-trial analysis of task behavior after systemic or intracranial treatment with dopamine D1 and D2 receptor agonists and antagonists, we show that negative feedback learning can be modulated through D2 receptor signaling and positive feedback learning through D1 receptor signaling in the ventral striatum. Furthermore, stimulation of D2 receptors in the ventral or dorsolateral (but not dorsomedial) striatum promoted explorative choice behavior, suggesting an additional function of dopamine in these areas in value-based decision making. Finally, treatment with most dopaminergic drugs affected response latencies and number of trials completed, which was also seen after infusion of D2, but not D1 receptor-acting drugs into the striatum. Together, our data support the idea that dopamine D1 and D2 receptors have complementary functions in learning on the basis of emotionally valenced feedback, and provide evidence that dopamine facilitates value-based and motivated behaviors through distinct striatal regions.


Assuntos
Tomada de Decisões/fisiologia , Neostriado/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Reversão de Aprendizagem/fisiologia , Estriado Ventral/fisiologia , Animais , Masculino , Modelos Neurológicos , Ratos Long-Evans
13.
J Neurosci ; 39(22): 4353-4364, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30902868

RESUMO

Being able to limit the pursuit of reward to prevent negative consequences is an important expression of behavioral inhibition. Everyday examples of an inability to exert such control over behavior are the overconsumption of food and drugs of abuse, which are important factors in the development of obesity and addiction, respectively. Here, we use a behavioral task that assesses the ability of male rats to exert behavioral restraint at the mere sight of palatable food during the presentation of an audiovisual threat cue to investigate the corticolimbic underpinnings of behavioral inhibition. We demonstrate a prominent role for the medial prefrontal cortex in the exertion of control over behavior under threat of punishment. Moreover, task engagement relies on function of the ventral striatum, whereas the basolateral amygdala mediates processing of the threat cue. Together, these data show that inhibition of reward pursuit requires the coordinated action of a network of corticolimbic structures.SIGNIFICANCE STATEMENT There is a need for translational models that allow to dissect mechanisms underlying the processes involved in controlling behavior. In this study, we present a novel behavioral task that assesses the ability of rats to exert behavioral restraint over the consumption of a visually present sucrose pellet during the presentation of an audiovisual threat cue. This task requires relatively little behavioral training and it discerns distinct behavioral impairments, including a failure to retrieve stimulus value, a reduced task engagement, and compromised inhibition of behavior. Using pharmacological inactivations of different regions of the corticolimbic system of the rat, we demonstrate dissociable roles for the prefrontal cortex, amygdala, and striatum in inhibition of reward pursuit under threat of punishment.


Assuntos
Encéfalo/fisiologia , Inibição Psicológica , Punição , Animais , Condicionamento Operante , Masculino , Ratos , Ratos Long-Evans , Recompensa
14.
Sci Rep ; 9(1): 1050, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705296

RESUMO

The homeostatic need for sodium is one of the strongest motivational drives known in animals. Although the brain regions involved in the sensory detection of sodium levels have been mapped relatively well, data about the neural basis of the motivational properties of salt appetite, including a role for midbrain dopamine cells, have been inconclusive. Here, we employed a combination of fiber photometry, behavioral pharmacology and c-Fos immunohistochemistry to study the involvement of the mesocorticolimbic dopamine system in salt appetite in rats. We observed that sodium deficiency affected the responses of dopaminergic midbrain neurons to salt tasting, suggesting that these neurons encode appetitive properties of sodium. We further observed a significant reduction in the consumption of salt after pharmacological inactivation of the nucleus accumbens (but not the medial prefrontal cortex), and microstructure analysis of licking behavior suggested that this was due to decreased motivation for, but not appreciation of salt. However, this was not dependent on dopaminergic neurotransmission in that area, as infusion of a dopamine receptor antagonist into the nucleus accumbens did not alter salt appetite. We conclude that the nucleus accumbens, but not medial prefrontal cortex, is important for the behavioral expression of salt appetite by mediating its motivational component, but that the switch in salt appreciation after sodium depletion, although detected by midbrain dopamine neurons, must arise from other areas.


Assuntos
Sódio/metabolismo , Animais , Baclofeno/farmacologia , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Masculino , Muscimol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
15.
Psychoneuroendocrinology ; 100: 27-31, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30273796

RESUMO

Reinforcement learning, the process by which an organism flexibly adapts behavior in response to reward and punishment, is vital for the proper execution of everyday behaviors, and its dysfunction has been implicated in a wide variety of mental disorders. Here, we use computational trial-by-trial analysis of data of female rats performing a probabilistic reward learning task and demonstrate that core computational processes underlying value-based decision making fluctuate across the estrous cycle, providing a neuroendocrine substrate by which gonadal hormones may influence adaptive behavior.


Assuntos
Ciclo Estral/fisiologia , Reforço Psicológico , Animais , Condicionamento Psicológico/fisiologia , Feminino , Aprendizagem/fisiologia , Ratos , Ratos Long-Evans
16.
Nat Commun ; 9(1): 731, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467419

RESUMO

Hyperdopaminergic states in mental disorders are associated with disruptive deficits in decision making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to impaired flexible decision making in rats. Activation of the VTA-nucleus accumbens pathway leads to insensitivity to loss and punishment due to impaired processing of negative reward prediction errors. In contrast, activation of the VTA-prefrontal cortex pathway promotes risky decision making without affecting the ability to choose the economically most beneficial option. Together, these findings show how malfunction of ascending VTA projections affects value-based decision making, suggesting a potential mechanism through which increased forebrain dopamine signaling leads to aberrant behavior, as is seen in substance abuse, mania, and after dopamine replacement therapy in Parkinson's disease.


Assuntos
Tomada de Decisões , Dopamina/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Animais , Dopamina/análise , Humanos , Masculino , Transtornos Mentais/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Assunção de Riscos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia
17.
Neuroimage ; 156: 109-118, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28502844

RESUMO

Linking neural circuit activation at whole-brain level to neuronal activity at cellular level remains one of the major challenges in neuroscience research. We set up a novel functional neuroimaging approach to map global effects of locally induced activation of specific midbrain projection neurons using chemogenetics (Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-technology) combined with pharmacological magnetic resonance imaging (phMRI) in the rat mesocorticolimbic system. Chemogenetic activation of DREADD-targeted mesolimbic or mesocortical pathways, i.e. projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) or medial prefrontal cortex (mPFC), respectively, induced significant blood oxygenation level-dependent (BOLD) responses in areas with DREADD expression, but also in remote defined neural circuitry without DREADD expression. The time-course of brain activation corresponded with the behavioral output measure, i.e. locomotor (hyper)activity, in the mesolimbic pathway-targeted group. Chemogenetic activation specifically increased neuronal activity, whereas functional connectivity assessed with resting state functional MRI (rs-fMRI) remained stable. Positive and negative BOLD responses distinctively reflected simultaneous ventral pallidum activation and substantia nigra pars reticulata deactivation, respectively, demonstrating the concept of mesocorticolimbic network activity with concurrent activation of the direct and indirect pathways following stimulation of specific midbrain projection neurons. The presented methodology provides straightforward and widely applicable opportunities to elucidate relationships between local neuronal activity and global network activity in a controllable manner, which will increase our understanding of the functioning and dysfunctioning of large-scale neuronal networks in health and disease.


Assuntos
Mapeamento Encefálico/métodos , Mesencéfalo/fisiologia , Vias Neurais/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA