Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39115541

RESUMO

Dendritic cell (DC) activation and function are underpinned by profound changes in cellular metabolism. Several studies indicate that the ability of DCs to promote tolerance is dependent on catabolic metabolism. Yet the contribution of AMP-activated kinase (AMPK), a central energy sensor promoting catabolism, to DC tolerogenicity remains unknown. Here, we show that AMPK activation renders human monocyte-derived DCs tolerogenic as evidenced by an enhanced ability to drive differentiation of regulatory T cells, a process dependent on increased RALDH activity. This is accompanied by several metabolic changes, including increased breakdown of glycerophospholipids, enhanced mitochondrial fission-dependent fatty acid oxidation, and upregulated glucose catabolism. This metabolic rewiring is functionally important as we found interference with these metabolic processes to reduce to various degrees AMPK-induced RALDH activity as well as the tolerogenic capacity of moDCs. Altogether, our findings reveal a key role for AMPK signaling in shaping DC tolerogenicity and suggest AMPK as a target to direct DC-driven tolerogenic responses in therapeutic settings.


Assuntos
Proteínas Quinases Ativadas por AMP , Diferenciação Celular , Células Dendríticas , Glucose , Tolerância Imunológica , Metabolismo dos Lipídeos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ativação Enzimática , Transdução de Sinais , Células Cultivadas
2.
Mol Oncol ; 18(7): 1759-1776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38275212

RESUMO

Metabolism plays a crucial role in regulating the function of immune cells in both health and disease, with altered metabolism contributing to the pathogenesis of cancer and many inflammatory diseases. The local microenvironment has a profound impact on the metabolism of immune cells. Therefore, immunological and metabolic heterogeneity as well as the spatial organization of cells in tissues should be taken into account when studying immunometabolism. Here, we highlight challenges of investigating metabolic communication. Additionally, we review the capabilities and limitations of current technologies for studying metabolism in inflamed microenvironments, including single-cell omics techniques, flow cytometry-based methods (Met-Flow, single-cell energetic metabolism by profiling translation inhibition (SCENITH)), cytometry by time of flight (CyTOF), cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), and mass spectrometry imaging. Considering the importance of metabolism in regulating immune cells in diseased states, we also discuss the applications of metabolomics in clinical research, as well as some hurdles to overcome to implement these techniques in standard clinical practice. Finally, we provide a flowchart to assist scientists in designing effective strategies to unravel immunometabolism in disease-relevant contexts.


Assuntos
Inflamação , Humanos , Inflamação/metabolismo , Inflamação/patologia , Animais , Metabolômica/métodos , Análise de Célula Única , Metabolismo Energético
3.
Cardiovasc Res ; 119(15): 2508-2521, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37390467

RESUMO

AIMS: Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS: Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS: Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.


Assuntos
Doenças da Aorta , Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Camundongos , Animais , Idoso , Doenças Cardiovasculares/complicações , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Leucócitos/metabolismo , Receptores de LDL/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA