Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895239

RESUMO

Post-Acute Sequelae of COVID-19 (PASC) encompasses persistent neurological symptoms, including olfactory and autonomic dysfunction. Here, we report chronic neurological dysfunction in mice infected with a virulent mouse-adapted SARS-CoV-2 that does not infect the brain. Long after recovery from nasal infection, we observed loss of tyrosine hydroxylase (TH) expression in olfactory bulb glomeruli and neurotransmitter levels in the substantia nigra (SN) persisted. Vulnerability of dopaminergic neurons in these brain areas was accompanied by increased levels of proinflammatory cytokines and neurobehavioral changes. RNAseq analysis unveiled persistent microglia activation, as found in human neurodegenerative diseases. Early treatment with antivirals (nirmatrelvir and molnupiravir) reduced virus titers and lung inflammation but failed to prevent neurological abnormalities, as observed in patients. Together these results show that chronic deficiencies in neuronal function in SARS-CoV-2-infected mice are not directly linked to ongoing olfactory epithelium dysfunction. Rather, they bear similarity with neurodegenerative disease, the vulnerability of which is exacerbated by chronic inflammation.

2.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319034

RESUMO

Drug-resistant Staphylococcus aureus strains are global health concerns. Several studies have shown that these strains can develop defences against cell wall antibiotics such as ß-lactams, glycopeptides and daptomycin which target cell wall biosynthesis. The coordination of these responses have been associated with two component system (TCS) regulated by histidine kinase protein (VraS) and its cognate regulator VraR which influences the target DNA upon signal recognition. Computer-based screening methods, predictions and simulations have emerged as more efficient and quick ways to identify promising new compound leads from large databases against emerging drug targets thus allowing prediction of small select set of molecules for further validations. These combined approaches conserve valuable time and resources. Due to methicillin resistance, sulfonamide-derivative medications have been found to be effective treatment strategy to treat S. aureus infections. The current study used ligand-based virtual screening (LBVS) to identify powerful sulfonamide derivative inhibitors from an antibacterial compound library against VraSR signaling components, VraS and VraR. We identified promising sulfonamide derivative [compound 5: (4-[(1-{[(3,5-Dimethoxyphenyl)Carbamoyl]Methyl}-2,4-Dioxo-1,2,3,4-Tetrahydroquinazolin-3-Yl)Methyl]-N-[(Furan-2-Yl)Methyl]Benzamide)] with reasonable binding parameters of -31.38 kJ/mol and ΔGbind score of -294.32 kJ/mol against ATP binding domain of sensor kinase VraS. We further identified four compounds N1 (PCID83276726), N3 (PCID83276757), N9 (PCID3672584), and N10 (PCID20900589) against VraR DNA binding domain (VraRC) with ΔGbind energies of -190.27, -237.54, -165.21, and -190.88 kJ/mol, respectively. Structural and simulation analyses further suggest their stable interactions with DNA interacting residues and potential to disrupt DNA binding domain dimerization; therefore, it is prudent to further investigate and characterize them as VraR dimer disruptors and inhibit other promoter binding site. Interestingly, the discovery of drugs that target VraS and VraR may open new therapeutic avenues for drug-resistant S. aureus. These predictions based on screening, simulations and binding affinities against VraSR components hold promise for opening novel therapeutic avenues against drug-resistant S. aureus and present opportunities for repositioning efforts. These efforts aim to create analogs with enhanced potency and selectivity against two-component signaling systems that significantly contribute to virulence in MRSA or VRSA. These analyses contribute valuable insights into potential avenues for combating antibiotic-resistant S. aureus through computationally driven drug discovery strategies.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 42(7): 3712-3730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37293938

RESUMO

Two component signaling system ArlRS (Autolysis-related locus) regulates adhesion, biofilm formation and virulence in methicillin resistant Staphylococcus aureus. It consists of a histidine kinase ArlS and response regulator ArlR. ArlR is composed of a N-terminal receiver domain and DNA-binding effector domain at C-terminal. ArlR receiver domain dimerizes upon signal recognition and activates DNA binding by effector domain and subsequent virulence expression. In silico simulation and structural data suggest that coumestrol, a phytochemical found in Pueraria montana, forges a strong intermolecular interaction with residues involved in dimer formation and destabilizes ArlR dimerization, an essential conformational switch required for downstream effector domain to bind to virulent loci. Structural and energy profiles of simulated ArlR-coumestrol complexes suggest lower affinity between ArlR monomers due to structural rigidity at the dimer interface hindering the conformational rearrangements relevant for dimer formation. These analyses could be an attractive strategy to develop therapeutics and potent leads molecules response regulators of two component systems in which are involved in MRSA virulence as well as other drug-resistant pathogens.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Virulência , Staphylococcus aureus , Cumestrol/farmacologia , Cumestrol/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , DNA/metabolismo
4.
J Biomol Struct Dyn ; : 1-20, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965748

RESUMO

Substituted ethoxy phthalimide pyrazole derivatives (6a-e) have been produced using a one-pot synthesis technique. Spectral analysis was used to establish the molecular structure of the synthesized compounds, and they were examined in silico and in vitro for their ability to bind to and inhibit replication of the AD-169 strain, the Davis strain of CMV, the OKA strain and the 07/1 strain of Varicella-Zoster virus (VZV). Molecular Docking was used to estimate the binding mechanism and energy of compounds 4, 6a-e to their respective target proteins, thymidine kinase (TK), Varicella-Zoster protease (VZP) of VZV and tegument protein pp71 (TPpp71) of Cytomegalovirus (CMV). The MIC50 and EC50 were utilized to evaluate the antiviral and cytotoxic activities of test compounds in human embryonic lung (HEL) cells against the two reference medicines, Ganciclovir and Acyclovir. The chemicals studied showed a high affinity for binding sites and near binding sites of target proteins by generating H-bonds, carbon-hydrogen bonds, π-anion, π-sulfur, π-sigma, alkyl and π-alkyl interactions. All of the test compounds (6a-e) had higher binding energy than the standard medications. The ADME/T data suggests that these potential inhibitors are less toxic. Drug-protein complexes are structurally compact and demonstrate minimal conformational change in molecular dynamics (MDs) simulations, indicating stability and stiffness. MM-PBSA and post-simulation analysis can predict lead compound active cavity binding stability. By inhibiting multitargeted proteins, these synthetic compounds may improve antiviral therapy. Our research suggests that these unique synthesized chemicals may be useful and accessible adjuvant antiviral therapy for Varicella Zoster and CMV. HighlightsTwo components synthesis of substituted ethoxy phthalimide pyrazole derivatives (6a-e).Tested compounds (6a-e) have antiviral and cytotoxicity activity against CMV and Varicella-Zoster virus (VZV) in HEL cells.Compounds bind to TK, Varicella-Zoster protease (VZP) of VZV, and modeled TPpp71 of Cytomegalovirus (CMV).In comparison to reference drugs, compounds have strong binding free energy and interactions with VZV and CMV protein complexes.The RMSD, RMSF, Rg, residual correlative motion (RCM), No. of hydrogen bonds, protein secondary structure content, per-residue protein secondary structure and MM/PBSA energy calculated for the selected compound with thymidine kinase (TK), VZP of VZV, and modeled tegument protein pp71 (TPpp71) of CMV through MD simulation studies for 50 ns.In comparison to the two reference drugs, ligands/compounds were found to meet the Lipinski rule of five and to have strong biological activity.Communicated by Ramaswamy H. Sarma.

5.
Comput Biol Med ; 158: 106863, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030267

RESUMO

Mycobacterium tuberculosis is leading cause of death worldwide. NAD participates in a host of redox reactions in energy landscape of organisms. Several studies implicate surrogate energy pathways involving NAD pools as important in survival of active as well as dormant mycobacteria. One of the NAD metabolic pathway enzyme, nicotinate mononucleotide adenylyltransferase (NadD) is indispensable in mycobacterial NAD metabolism and is perceived as an attractive drug target in pathogen. In this study, we have employed in silico screening, simulation and MM-PBSA strategies to identify potentially important alkaloid compounds against mycobacterial NadD for structure-based inhibitor development. We have performed an exhaustive structure-based virtual screening of an alkaloid library, ADMET, DFT profiling followed by Molecular Dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation to identify 10 compounds which exhibit favourable drug like properties and interactions. Interaction energies of these 10 alkaloid molecules range between -190 kJ/mol and -250 kJ/mol. These compounds could be promising starting point in the development of selective inhibitors against Mycobacterium tuberculosis.


Assuntos
Alcaloides , Antineoplásicos , Mycobacterium tuberculosis , NAD , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Simulação de Acoplamento Molecular
6.
J Biomol Struct Dyn ; 41(10): 4681-4695, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35532103

RESUMO

Two proinflammatory cytokines, IL17A and IL18, are observed to be elevated in the serum of gout patients and they play a crucial role in the development and worsening of inflammation, which has severe effects. In present study, we have combined molecular docking, molecular dynamics studies and MM-PBSA analysis to study the effectiveness of ethoxy phthalimide pyrazole derivatives (series 3a to 3e) as potential inhibitors against cytokines IL17A and IL18 as a druggable targets. The binding energy of the docked series ranges from -13.5 to -10.0 kcal/mol and extensively interacts with the amino acids in the active pocket of IL17A and IL18. Compound 3e had the lowest binding energy with IL17A at -12.6 kcal/mol compared to control allopurinol (3.32 kcal/mol). With IL18, compound 3a seems to have the lowest binding energy of -9.6 kcal/mol compared to control allopurinol (3.18 kcal/mol). In MD simulation studies, compound 3a forms a stable and energetically stabilized complex with the target protein. Depending on properties of the bound IL17A-3a and IL18-3a complexes was compared by means of MM-PBSA analysis. These derivatives can be used as a scaffold to develop promising IL17A and IL18 inhibitors to assess their potential for gouty arthritis and other related diseases. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Artrite Gotosa , Humanos , Interleucina-18 , Artrite Gotosa/tratamento farmacológico , Interleucina-17 , Alopurinol , Simulação de Acoplamento Molecular , Citocinas , Ftalimidas/farmacologia , Pirazóis/farmacologia , Simulação de Dinâmica Molecular
7.
Infect Genet Evol ; 106: 105385, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368610

RESUMO

Mucormycosis is a life-threatening fungal infection, particularly in immunocompromised patients. Mucormycosis has been reported to show resistance to available antifungal drugs and was recently found in COVID-19 as a co-morbidity that demands new classes of drugs. In an attempt to find novel inhibitors against the high-affinity iron permease (FTR1), a novel target having fundamental importance on the pathogenesis of mucormycosis, 11,000 natural compounds were investigated in this study. Virtual screening and molecular docking identified two potent natural compounds [6',7,7,10',10',13'-hexamethylspiro[1,8-dihydropyrano[2,3-g]indole-3,11'-3,13-diazatetracyclo[5.5.2.01,9.03,7]tetradecane]-2,9,14'-trione and 5,7-dihydroxy-3-(2,2,8,8-tetramethylpyrano[2,3-f]chromen-6-yl)chromen-4-one] that effectively bind to the active cavity of FTR1 with a binding affinity of -9.9 kcal/mol. Multiple non-covalent interactions between the compounds and the active residues of this cavity were noticed, which is required for FTR1 inhibition. These compounds were found to have inhibitory nature and meet essential requirements to be drug-like compounds with a considerable absorption, distribution, metabolism, and excretion (ADME) profile with no toxicity probabilities. Molecular dynamics simulation confirms the structural compactness and less conformational variation of the drug-protein complexes maintaining structural stability and rigidity. MM-PBSA and post-simulation analysis predict binding stability of these compounds in the active cavity. This study hypothesizing that these compounds could be a potential inhibitor of FTR1 and will broaden the clinical prospects of mucormycosis.


Assuntos
COVID-19 , Mucormicose , Humanos , Proteínas de Membrana Transportadoras/genética , Simulação de Acoplamento Molecular , Mucormicose/microbiologia , Simulação de Dinâmica Molecular , Fungos , Ferro/metabolismo
8.
JCI Insight ; 7(24)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36378534

RESUMO

Loss of olfactory function has been commonly reported in SARS-CoV-2 infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Animais , Camundongos , Olfato/fisiologia , SARS-CoV-2 , Anosmia , Inflamação , Transdução de Sinais
9.
J Virol ; 96(11): e0036422, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588276

RESUMO

Effective broad-spectrum antivirals are critical to prevent and control emerging human coronavirus (hCoV) infections. Despite considerable progress made toward identifying and evaluating several synthetic broad-spectrum antivirals against hCoV infections, a narrow therapeutic window has limited their success. Enhancing the endogenous interferon (IFN) and IFN-stimulated gene (ISG) response is another antiviral strategy that has been known for decades. However, the side effects of pegylated type-I IFNs (IFN-Is) and the proinflammatory response detected after delayed IFN-I therapy have discouraged their clinical use. In contrast to IFN-Is, IFN-λ, a dominant IFN at the epithelial surface, has been shown to be less proinflammatory. Consequently, we evaluated the prophylactic and therapeutic efficacy of IFN-λ in hCoV-infected airway epithelial cells and mice. Human primary airway epithelial cells treated with a single dose of IFN-I (IFN-α) and IFN-λ showed similar ISG expression, whereas cells treated with two doses of IFN-λ expressed elevated levels of ISG compared to that of IFN-α-treated cells. Similarly, mice treated with two doses of IFN-λ were better protected than mice that received a single dose, and a combination of prophylactic and delayed therapeutic regimens completely protected mice from a lethal Middle East respiratory syndrome CoV (MERS-CoV) infection. A two-dose IFN-λ regimen significantly reduced lung viral titers and inflammatory cytokine levels with marked improvement in lung inflammation. Collectively, we identified an effective regimen for IFN-λ use and demonstrated the protective efficacy of IFN-λ in MERS-CoV-infected mice. IMPORTANCE Effective antiviral agents are urgently required to prevent and treat individuals infected with SARS-CoV-2 and other emerging viral infections. The COVID-19 pandemic has catapulted our efforts to identify, develop, and evaluate several antiviral agents. However, a narrow therapeutic window has limited the protective efficacy of several broad-spectrum and CoV-specific antivirals. IFN-λ is an antiviral agent of interest due to its ability to induce a robust endogenous antiviral state and low levels of inflammation. Here, we evaluated the protective efficacy and effective treatment regimen of IFN-λ in mice infected with a lethal dose of MERS-CoV. We show that while prophylactic and early therapeutic IFN-λ administration is protective, delayed treatment is detrimental. Notably, a combination of prophylactic and delayed therapeutic administration of IFN-λ protected mice from severe MERS. Our results highlight the prophylactic and therapeutic use of IFN-λ against lethal hCoV and likely other viral lung infections.


Assuntos
Antivirais , Infecções por Coronavirus , Interferons , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Humanos , Interferons/farmacologia , Camundongos , Interferon lambda
10.
Front Med Technol ; 4: 845322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419560

RESUMO

This research aims to find out whether the 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with Candida albicans. Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a particular protein with a ligand. We are interested in using molecular docking and molecular dynamics modeling to investigate the interaction between the derivatives of 1, 2, 4-triazine with enzyme Lanosterol 14-demethylase (CYP51) of Candida albicans. The inhibition of Candida albicans CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools were used to identify the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future in vitro testing.

12.
J Biomol Struct Dyn ; 40(24): 13412-13431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34696688

RESUMO

SGK1 (Serum and Glucocorticoid Regulated Kinase 1), a serine/threonine kinase that is activated by various stimuli, including serum and glucocorticoids. It controls inflammation, apoptosis, hormone release, neuro-excitability and cell proliferation, all of which play an important role in cancer progression and metastasis. SGK1 was recently proposed as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In this study, molecular docking, physiochemical, toxicological properties and molecular dynamic simulation of the Bis-[1-N,7-N, Pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compoundsand reference EMD638683 against new SGK1 target protein. Compared to the reference inhibitor EMD638683, we choose the best compounds (series 2-6) based on the binding energy (in the range from -11.0 to -10.6 kcal/mol). With the exception of compounds 2 and 6, none of the compounds posed a risk for AMES toxicity or carcinogenicity due to their toxicological properties. 100 ns MD simulation accompanied by MM/PBSA energy calculations and PCA. According to MD simulation results, the binding of compounds 3, 4 and 5 stabilizes the SGK1 structure and causes febrile conformational changes compared to EMD638683. As a result of this research, the final selected compounds 3, 4 and 5 can be used as scaffolds to develop promising SGK1 inhibitors for the treatment of related diseases such as cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Benzamidas , Proteínas Serina-Treonina Quinases , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/química , Benzamidas/farmacologia , Simulação de Dinâmica Molecular
13.
J Biomol Struct Dyn ; 40(21): 10561-10577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243699

RESUMO

Methicillin-Resistant Staphylococcus aureus (MRSA), a pathogenic bacterium that causes life-threatening outbreaks such as community-onset and nosocomial infections as emerging 'superbug'. Time and motion study of its virulent property developed resistance against most of the antibiotics such as Vancomycin. Thereby, to curb this problem entails the development of new therapeutic agents. Plant-derived antimicrobial agents have recently piqued people's interest, so in this research, 186 flavonoids compound selected to unmask the best candidates that can act as potent inhibitors against the Penicillin Binding Protein-2a (PBP-2a) of MRSA. Molecular docking performed using PyRx and GOLD suite to determine the binding affinities and interactions between the phytochemicals and the PBP-2a. The selected candidates strongly interact with the different amino acid residues. The 30 ns molecular dynamics (MD) simulations with five top-ranked compounds such as Naringin, Hesperidin, Neohesperidin, Didymin and Icariin validated the docking interactions. These findings are also strongly supported by root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. ADME/T analysis demonstrates that these candidates appear to be safer inhibitors. Our findings point to natural flavonoids as a promising and readily available source of adjuvant antimicrobial therapy against resistant strains in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Flavonoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/química
14.
mBio ; 12(5): e0196921, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488442

RESUMO

Microglia and macrophages initiate and orchestrate the innate immune response to central nervous system (CNS) virus infections. Microglia initiate neurotropic coronavirus clearance from the CNS, but the role of infiltrating macrophages is not well understood. Here, using mice lacking cell-specific expression of DP1, the receptor for prostaglandin D2 (PGD2), we delineate the relative roles of PGD2 signaling in microglia and macrophages in murine coronavirus-infected mice. We show that the absence of PGD2/DP1 signaling on microglia recapitulated the suboptimal immune response observed in global DP1-/- mice. Unexpectedly, the absence of the DP1 receptor on macrophages had an opposite effect, resulting in enhanced activation and more rapid virus clearance. However, microglia are still required for disease resolution, even when macrophages are highly activated, in part because they are required for macrophage recruitment to sites of infection. Together, these results identify key differences in the effects of PGD2/DP1 signaling on microglia and macrophages and illustrate the complex relationship between the two types of myeloid cells. IMPORTANCE Current understanding about the roles of microglia versus macrophages in viral encephalitis is limited. We previously showed that the signaling of a single prostaglandin, PGD2, through its DP1 receptor on myeloid cells is critical for optimal immune responses in infected mice. Here, we demonstrate that the specific ablation of the DP1 receptor on macrophages and microglia had markedly different effects on outcomes. DP1-/- macrophages exhibited greater phagocytic properties than controls, resulting in enhanced kinetics of virus clearance, while DP1 absence on microglia resulted in increased lethality. Microglia were still required for protection, even when DP1 was not expressed on macrophages. These results suggest that therapeutic strategies directed at specific myeloid subsets in the brain may be useful in the context of viral infections.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Vírus da Hepatite Murina/patogenicidade , Prostaglandina D2/metabolismo , Animais , Encefalite/virologia , Camundongos , Fagocitose , Transdução de Sinais , Fator de Transcrição DP1/metabolismo
15.
Nature ; 589(7843): 603-607, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166988

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic is associated with substantial morbidity and mortality. Although much has been learned in the first few months of the pandemic, many features of COVID-19 pathogenesis remain to be determined. For example, anosmia is a common presentation, and many patients with anosmia show no or only minor respiratory symptoms1. Studies in animals infected experimentally with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19, provide opportunities to study aspects of the disease that are not easily investigated in human patients. Although the severity of COVID-19 ranges from asymptomatic to lethal2, most experimental infections provide insights into mild disease3. Here, using K18-hACE2 transgenic mice that were originally developed for SARS studies4, we show that infection with SARS-CoV-2 causes severe disease in the lung and, in some mice, the brain. Evidence of thrombosis and vasculitis was detected in mice with severe pneumonia. Furthermore, we show that infusion of convalescent plasma from a recovered patient with COVID-19 protected against lethal disease. Mice developed anosmia at early time points after infection. Notably, although pre-treatment with convalescent plasma prevented most signs of clinical disease, it did not prevent anosmia. Thus, K18-hACE2 mice provide a useful model for studying the pathological basis of both mild and lethal COVID-19 and for assessing therapeutic interventions.


Assuntos
Anosmia/virologia , COVID-19/fisiopatologia , COVID-19/terapia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Animais , Anosmia/fisiopatologia , Anosmia/terapia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/imunologia , COVID-19/virologia , Epitélio/imunologia , Epitélio/virologia , Feminino , Humanos , Imunização Passiva , Inflamação/patologia , Inflamação/terapia , Inflamação/virologia , Pneumopatias/patologia , Pneumopatias/terapia , Pneumopatias/virologia , Masculino , Camundongos , Seios Paranasais/imunologia , Seios Paranasais/virologia , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Resultado do Tratamento , Soroterapia para COVID-19
16.
PLoS Negl Trop Dis ; 12(7): e0006648, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001342

RESUMO

Chandipura Virus (CHPV), a negative-stranded RNA virus belonging to the Rhabdoviridae family, has been previously reported to bring neuronal apoptosis by activating several factors leading to neurodegeneration. Following virus infection of the central nervous system, microglia, the ontogenetic and functional equivalents of macrophages in somatic tissues gets activated and starts secreting chemokines, thereby recruiting peripheral leukocytes into the brain parenchyma. In the present study, we have systemically examined the effect of CHPV on microglia and the activation of cellular signalling pathways leading to chemokine expression upon CHPV infection. Protein and mRNA expression profiles of chemokine genes revealed that CHPV infection strongly induces the expression of CXC chemokine ligand 10 (CXCL10) and CC chemokine ligand 5 (CCL5) in microglia. CHPV infection triggered the activation of signalling pathways mediated by mitogen-activated protein kinases, including p38, JNK 1 and 2, and nuclear factor κB (NF-kappaB). CHPV-induced expression of CXCL10 and CCL5 was achieved by the activation of p38 and NF-kappaB pathways. Considering the important role of inflammation in neurodegeneration, we have targeted NF-kappaB using a newly synthesised natural product nitrosporeusine analogue and showed incapability of microglial supernatant of inducing apoptosis in neurons after treatment.


Assuntos
Alcaloides/administração & dosagem , Antivirais/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Microglia/imunologia , NF-kappa B/imunologia , Infecções por Rhabdoviridae/imunologia , Vesiculovirus/fisiologia , Animais , Linhagem Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/virologia , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/virologia , NF-kappa B/genética , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/virologia , Transdução de Sinais/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/genética
17.
Eur J Med Chem ; 135: 89-109, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28433779

RESUMO

Nitrosporeusines A and B are two recently isolated marine natural products with novel skeleton and exceptional biological profile. Interesting antiviral activity of nitrosporeusines and promising potential in curing various diseases, evident from positive data from various animal models, led us to investigate their anti-inflammatory potential. Accordingly, we planned and synthesized nitrosporeusines A and B in racemic as well as enantiopure forms. The natural product synthesis was followed by preparation of several analogues, and all the synthesized compounds were evaluated for in vitro and in vivo anti-inflammatory potential. Among them, compounds 25, 29 and 40 significantly reduced levels of nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines. In addition, these compounds suppressed several pro-inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-κB), and thereby can be emerged as potent anti-inflammatory compounds. Furthermore, all possible isomers of lead compound 25 were synthesized, characterized and profiled in same set of assays and found that one of the enantiomer (-)-25a was superior among them.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Produtos Biológicos/farmacologia , Citocinas/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
18.
Sci Rep ; 6: 22544, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26931456

RESUMO

Neurotropic viruses induce neurodegeneration either directly by activating host death domains or indirectly through host immune response pathways. Chandipura Virus (CHPV) belonging to family Rhabdoviridae is ranked among the emerging pathogens of the Indian subcontinent. Previously we have reported that CHPV induces neurodegeneration albeit the root cause of this degeneration is still an open question. In this study we explored the role of microglia following CHPV infection. Phenotypic analysis of microglia through lectin and Iba-1 staining indicated cells were in an activated state post CHPV infection in cortical region of the infected mouse brain. Cytokine Bead Array (CBA) analysis revealed comparatively higher cytokine and chemokine levels in the same region. Increased level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), Nitric Oxide (NO) and Reactive Oxygen species (ROS) in CHPV infected mouse brain indicated a strong inflammatory response to CHPV infection. Hence it was hypothesized through our analyses that this inflammatory response may stimulate the neuronal death following CHPV infection. In order to validate our hypothesis supernatant from CHPV infected microglial culture was used to infect neuronal cell line and primary neurons. This study confirmed the bystander killing of neurons due to activation of microglia post CHPV infection.


Assuntos
Morte Celular , Microglia/metabolismo , Neurônios/citologia , Infecções por Rhabdoviridae/patologia , Vesiculovirus/isolamento & purificação , Animais , Encéfalo/patologia , Efeito Espectador , Ciclo-Oxigenase 2/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Infecções por Rhabdoviridae/metabolismo
19.
Cochrane Database Syst Rev ; 11: CD009129, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152269

RESUMO

BACKGROUND: Neonatal circumcision is a fairly common surgical procedure that may be carried out for medical reasons, one of them being prevention of urinary tract infections (UTI) in male infants. Circumcision could help in reducing the incidence of UTI by reducing periurethral bacterial colonization, which is accepted as a potential risk factor in UTI. Evidence is needed to inform the benefits or harm for the routine use of this intervention. OBJECTIVES: To assess the effectiveness and safety of routine neonatal circumcision for the prevention of UTIs in infancy. SEARCH METHODS: We searched the Cochrane Neonatal Review Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We completed this search 30 June 2011. SELECTION CRITERIA: Randomised controlled trials and quasi-randomised controlled trials. DATA COLLECTION AND ANALYSIS: Two review authors had planned to independently screen studies, extract data and assess risk of bias using standard Cochrane Collaboration methodologies. We did not identify any studies for inclusion in this review. MAIN RESULTS: We did not identify any relevant studies after a comprehensive search of the literature. AUTHORS' CONCLUSIONS: We were unable to identify any randomised controlled trials on the use of routine neonatal circumcision for prevention of UTI in male infants. Until further evidence becomes available, clinicians should continue to base their decisions on position statements and recommendations and in conjunction with the opinions of the children's parents.


Assuntos
Circuncisão Masculina/métodos , Infecções Urinárias/prevenção & controle , Humanos , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA