Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 204: 108089, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852069

RESUMO

Fluoride (F-) stress is one of the major environmental pollutant, affecting plant growth, development and production, globally. Acquisition of eco-friendly F- stress reliever seems to be the major concern these days. Consequently, application of engineered nanomaterials (ENMs) has been increasing to improve agri-economy. However, the impact of silicon nanoparticles (Si NPs) on mitigation of F- stress has not been investigated yet. Thus, the present study was conducted to compare their protective roles against F- stress by improving diurnal photosynthetic efficiency of sugarcane plant leaves. An ability of sugarcane (Saccharum officinarum cv. GT44) plants to ameliorate F- toxicity assessed through soil culture medium. After an adaptive growth phase, 45 days old plants select to examine F- mitigative efficacy of silicon nanoparticles (SiNPs: 0, 100, 300 and 500 ppm) on sugarcane plants, irrigated by F- contaminated water (0, 100, 200 and 500 ppm). Our results strongly favour that SiNPs enhanced diurnally leaf photosynthetic gas exchange viz., photosynthesis (∼1.0-29%), stomatal conductance (∼3.0-90%), and transpiration rate (∼0.5-43%), significantly, as revealed by increments in photochemical chlorophyll fluorescence efficiency of PS II linked with performance index and photosynthetic pigments during F- stress. To the best of our knowledge, this is the first investigation to explore the impact of SiNPs improving and/or maintaining the diurnal photosynthetic responses in sugarcane plants in response to F- stress. It may also precisely unlayer action of molecular mechanism(s) mediated by SiNPs, found essential for mitigation of F--toxicity to explore nano-phytoremediation approach for crop improvement and agri-economy as well.


Assuntos
Nanopartículas , Saccharum , Silício/farmacologia , Fluoretos/farmacologia , Fotossíntese , Folhas de Planta/fisiologia , Clorofila
2.
ACS Omega ; 6(30): 19811-19821, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368568

RESUMO

Water stress may become one of the most inevitable factors in years to come regulating crop growth, development, and productivity globally. The application of eco-friendly stress mitigator may sustain physiological fitness of the plants as uptake and accumulation of silicon (Si) found to alleviate stress with plant performance. Our study focused on the mitigative effects of Si using calcium metasilicate (wollastonite powder, CaO·SiO2) in sugarcane (Saccharum officinarum L.) prior to the exposure of water stress created by the retention of 50-45% soil moisture capacity. Si (0, 50, 100, and 500 ppm L-1) was supplied through soil irrigation in S. officinarum L. grown at about half of the soil moisture capacity for a period of 90 days. Water stress impaired plant growth, biomass, leaf relative water content, SPAD value, photosynthetic pigments capacity, and photochemical efficiency (F v/F m) of photosystem II. The levels of antioxidative defense-induced enzymes, viz., catalase, ascorbate peroxidase, and superoxide dismutase, enhanced. Silicon-treated plants expressed positive correlation with their performance index. A quadratic nonlinear relation observed between loss and gain (%) in physiological and biochemical parameters during water stress upon Si application. Si was found to be effective in restoring the water stress injuries integrated to facilitate the operation of antioxidant defense machinery in S. officinarum L. with improved plant performance index and photosynthetic carbon assimilation.

3.
Biol Res ; 54(1): 15, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933166

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Saccharum , Silício , Desidratação , Fotossíntese , Folhas de Planta , Água
4.
ACS Omega ; 6(3): 2396-2409, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521478

RESUMO

Sufficient water and fertilizer inputs in agriculture play a major role in crop growth, production, and quality. In this study, the response of sugarcane to limited water irrigation and foliar application of potassium salt of active phosphorus (PSAP) for photosynthetic responses were examined, and PSAP's role in limited water irrigation management was assessed. Sugarcane plants were subjected to limited irrigation (95-90 and 45-40% FC) after three months of germination, followed by a foliar spray (0, 2, 4, 6, and 10 M) of PSAP. The obtained results indicated that limited water irrigation negatively affected sugarcane growth and reduced leaf gas exchange activities. However, the application of PSAP increased the photosynthetic activities by protecting the photosynthetic machinery during unfavorable conditions. Mathematical modeling, a Skewed model, was developed and compared with the existing Gaussian model to describe the photosynthetic responses of sugarcane leaves under the limited irrigation with and without PSAP application. The models fitted well with the observed values, and the predicted photosynthetic parameters were in close relationship with the obtained results. The Skewed model was found to be better than the Gaussian model in describing the photosynthetic parameters of plant leaves positioned over a stem of limited water irrigation and applied PSAP application and is recommended for further application.

5.
Biol. Res ; 54: 15-15, 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505808

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Silício , Saccharum , Fotossíntese , Água , Folhas de Planta , Desidratação
6.
PeerJ ; 8: e10154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194396

RESUMO

In the dynamic era of climate change, agricultural farming systems are facing various unprecedented problems worldwide. Drought stress is one of the serious abiotic stresses that hinder the growth potential and crop productivity. Silicon (Si) can improve crop yield by enhancing the efficiency of inputs and reducing relevant losses. As a quasi-essential element and the 2nd most abundant element in the Earth's crust, Si is utilized by plants and applied exogenously to combat drought stress and improve plant performance by increasing physiological, cellular and molecular responses. However, the physiological mechanisms that respond to water stress are still not well defined in Saccharum officinarum plants. To the best of our knowledge, the dynamics of photosynthesis responsive to different exogenous Si levels in Saccharum officinarum has not been reported to date. The current experiment was carried out to assess the protective role of Si in plant growth and photosynthetic responses in Saccharum officinarum under water stress conditions. Saccharum officinarum cv. 'GT 42' plants were subjected to drought stress conditions (80-75%, 55-50% and 35-30% of soil moisture) after ten weeks of normal growth, followed by the soil irrigation of Si (0, 100, 300 and 500 mg L-1) for 8 weeks. The results indicated that Si addition mitigated the inhibition in Saccharum officinarum growth and photosynthesis, and improved biomass accumulation during water stress. The photosynthetic responses (photosynthesis, transpiration and stomatal conductance) were found down-regulated under water stress, and it was significantly enhanced by Si application. No phytotoxic effects were monitored even at excess (500 mg L-1). Soil irrigation of 300 mg L-1 of Si was more effective as 100 and 500 mg L-1 under water stress condition. It is concluded that the stress in Saccharum officinarum plants applied with Si was alleviated by improving plant fitness, photosynthetic capacity and biomass accumulation as compared with the control. Thus, this study offers new information towards the assessment of growth, biomass accumulation and physiological changes related to water stress with Si application in plants.

7.
Plants (Basel) ; 9(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823963

RESUMO

Silicon (Si) is not categorized as a biologically essential element for plants, yet a great number of scientific reports have shown its significant effects in various crop plants and environmental variables. Plant Si plays biologically active role in plant life cycle, and the significant impact depends on its bioaccumulation in plant tissues or parts. In particular, it has been investigated for its involvement in limited irrigation management. Therefore, this experiment was conducted to examine the effect of Si application in eco-physiological, enzymatic and non-enzymatic activities of sugarcane plants against water stress. Four irrigation levels, i.e., normal (100-95% of soil moisture), 80-75, 55-50, and 35-30% of soil moisture were treated for the sugarcane cultivar GT 42 plants supplied with 0, 100, 200, 300, 400 and 500 mg Si L-1 and exposed for 60 days after Si application. Under stress, reduction in plant length (~26-67%), leaf area-expansion (~7-51%), relative water content (~18-57%), leaf greenness (~12-35%), photosynthetic pigments (~12-67%), physiological responses such as photosynthesis (22-63%), stomatal conductance (~25-61%), and transpiration rate (~32-63%), and biomass production were observed in the plants without Si application. The drought condition also inhibited the activities of antioxidant enzymes like catalase (~10-52%), peroxidase (ca. 4-35), superoxide dismutase (10-44%) and enhanced proline (~73-410%), and malondialdehyde content (ca. 15-158%), respectively. However, addition of Si ameliorated drought induced damage in sugarcane plants. The findings suggest that the active involvement of Si in sugarcane responsive to water stress ranges from plant performance and physiological processes, to antioxidant defense systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA