Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 286: 127780, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38970905

RESUMO

In recent years, research into the complex interactions and crosstalk between plants and their associated microbiota, collectively known as the plant microbiome has revealed the pivotal role of microbial communities for promoting plant growth and health. Plants have evolved intricate relationships with a diverse array of microorganisms inhabiting their roots, leaves, and other plant tissues. This microbiota mainly includes bacteria, archaea, fungi, protozoans, and viruses, forming a dynamic and interconnected network within and around the plant. Through mutualistic or cooperative interactions, these microbes contribute to various aspects of plant health and development. The direct mechanisms of the plant microbiome include the enhancement of plant growth and development through nutrient acquisition. Microbes have the ability to solubilize essential minerals, fix atmospheric nitrogen, and convert organic matter into accessible forms, thereby augmenting the nutrient pool available to the plant. Additionally, the microbiome helps plants to withstand biotic and abiotic stresses, such as pathogen attacks and adverse environmental conditions, by priming the plant's immune responses, antagonizing phytopathogens, and improving stress tolerance. Furthermore, the plant microbiome plays a vital role in phytohormone regulation, facilitating hormonal balance within the plant. This regulation influences various growth processes, including root development, flowering, and fruiting. Microbial communities can also produce secondary metabolites, which directly or indirectly promote plant growth, development, and health. Understanding the functional potential of the plant microbiome has led to innovative agricultural practices, such as microbiome-based biofertilizers and biopesticides, which harness the power of beneficial microorganisms to enhance crop yields while reducing the dependency on chemical inputs. In the present review, we discuss and highlight research gaps regarding the plant microbiome and how the plant microbiome can be used as a source of single and synthetic bioinoculants for plant growth and health.

2.
Front Nutr ; 11: 1387130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725576

RESUMO

Chickpeas (Cicer arietinum L.) are used as a good source of proteins and energy in the diets of various organisms including humans and animals. Chickpea straws can serve as an alternative option for forage for different ruminants. This research mainly focussed on screening the effects of adding beneficial chickpea seed endophytes on increasing the nutritional properties of the different edible parts of chickpea plants. Two efficient chickpea seed endophytes (Enterobacter sp. strain BHUJPCS-2 and BHUJPCS-8) were selected and applied to the chickpea seeds before sowing in the experiment conducted on clay pots. Chickpea seeds treated with both endophytes showed improved plant growth and biomass accumulation. Notably, improvements in the uptake of mineral nutrients were found in the foliage, pericarp, and seed of the chickpea plants. Additionally, nutritional properties such as total phenolics (0.47, 0.25, and 0.55 folds), total protein (0.04, 0.21, and 0.18 folds), carbohydrate content (0.31, 0.32, and 0.31 folds), and total flavonoid content (0.45, 027, and 0.8 folds) were increased in different parts (foliage, pericarp, and seed) of the chickpea plants compared to the control plants. The seed endophyte-treated plants showed a significant increase in mineral accumulation and improvement in nutrition in the different edible parts of chickpea plants. The results showed that the seed endophyte-mediated increase in dietary and nutrient value of the different parts (pericarp, foliage, and seeds) of chickpea are consumed by humans, whereas the other parts (pericarp and foliage) are used as alternative options for forage and chaff in livestock diets and may have direct effects on their nutritional conditions.

3.
Heliyon ; 10(8): e29692, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660266

RESUMO

Rice is a major dietary element for about two billion people worldwide and it faces numerous biotic and abiotic stress for its cultivation. Rice blast disease caused by Magnaporthe oryzae reduce up to 30 % rice yield. Overuse of synthetic chemicals raises concerns about health and environment; so, there is an urgent need to explore innovative sustainable strategies for crop productivity. The main aim of this study is to explore the impact of bacterial volatiles (BVCs) on seedling growth and defense mechanisms of rice under in-vitro condition. On the basis of plant growth promoting properties, six bacterial strains were selected out of ninety-one isolated strains for this study; Pantoea dispersa BHUJPVR01, Enterobacter cloacae BHUJPVR02, Enterobacter sp. BHUJPVR12, Priestia aryabhattai BHUJPVR13, Pseudomonas sp. BHUJPVWRO5 and Staphylococcus sp. BHUJPVWLE7. Through the emission of bacterial volatiles compounds (BVCs), Enterobacter sp., P. dispersa and P. aryabhattai significantly reduces the growth of rice blast fungus Magnaporthe oryzae by 69.20 %, 66.15 % and 62.31 % respectively. Treatment of rice seedlings with BVCs exhibited significant enhancement in defence enzyme levels, including guaiacol peroxidase, polyphenol oxidase, total polyphenols, and total flavonoids by a maximum of up to 24 %, 48 %, 116 % and 80 %, respectively. Furthermore, BVCs effectively promote shoot height, root height, and root counts of rice. All BVCs treated plant showed a significant increase in shoot height. P. dispersa treated plants showed the highest increase of 60 % shoot and 110 % root length, respectively. Root counts increased up to 30% in plants treated with E. cloacae and Staphylococcus sp. The BVCs can be used as a sustainable approach for enhancing plant growth attributes, productivity and defence mechanism of rice plant under biotic and abiotic stresses.

4.
Glob Med Genet ; 11(1): 36-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38304308

RESUMO

Background Hereditary cardiomyopathies are commonly occurring myocardial conditions affecting heart structure and function with a genetic or familial association, but the etiology is often unknown. Cardiomyopathies are linked to significant mortality, requiring robust risk stratification with genetic testing and early diagnosis. Hypothesis We hypothesized that health care disparities exist in genetic testing for hereditary cardiomyopathies within clinical practice and research studies. Methods In a narrative fashion, we conducted a literature search with online databases such as PubMed/MEDLINE, Google Scholar, EMBASE, and Science Direct on papers related to hereditary cardiomyopathies. A comprehensive analysis of findings from articles in English on disparities in diagnostics and treatment was grouped into four categories. Results Racial and ethnic disparities in research study enrollment and health care delivery favor White populations and higher socioeconomic status, resulting in differences in the development and implementation of effective genetic screening. Such disparities have shown to be detrimental, as minorities often suffer from disease progression to heart failure and sudden cardiac death. Barriers related to clinical genetic testing included insurance-related issues and health illiteracy. The underrepresentation of minority populations extends to research methodologies, as testing in ethnic minorities resulted in a significantly lower detection rate and diagnostic yield, as well as a higher likelihood of misclassification of variants. Conclusions Prioritizing minority-based participatory research programs and screening protocols can address systemic disparities. Diversifying research studies can improve risk stratification strategies and impact clinical practice.

6.
Clin Epidemiol Glob Health ; 21: 101283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033719

RESUMO

Problem: The determinants of COVID-19 vaccine acceptance, hesitancy, and refusal remain poorly understood. We assessed the general population of Pune after visiting tertiary care hospital for their willingness to accept the vaccine and the reason for their hesitancy and refusal. Methodology: A six-month descriptive cross-sectional study with 386 community members over the age of 18 who visited the Tertiary Hospital OPD was conducted. The vaccine acceptance and hesitancy was assessed using a self designed detailed questionnaire with a one-time face-to-face interview. Results: Acceptance for vaccine was observed in 235 (60.8%) participants, while 151 (39.2%) hesitated and refused. Participants with lower education (P < 0.00001), no employment did not readily accept the vaccine (P < 0.00001). Pregnant, breast-feeding women (21.8%) hesitated vaccine because of lack of evidence regarding vaccine safety. Participants (73.6%) were readily accepting (third dose) booster dose of vaccine when available. The reason for vaccine hesitance was the concern about side effects (58.2%) and reason for acceptance was to get immunity against COVID-19 (76.1%). Vaccine information source appears to be an influential aspect, as participants who obtained vaccination information from healthcare providers had no concerns regarding vaccination. Conclusion: The study has found a link between average education level, unemployment and vaccine acceptance and hesitancy. Factors influencing vaccine hesitancy include lack of vaccine information, vaccine side effects, and misinformation spread via social media. Clinical pharmacists can play an important role in boosting up vaccine acceptance by providing appropriate information in community.

8.
Arthrosc Sports Med Rehabil ; 5(2): e349-e357, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37101859

RESUMO

Purpose: To evaluate active social media use among members of the Arthroscopy Association of North America (AANA) and investigate differences in social media use based on joint-specific subspecialization. Methods: The AANA membership directory was queried to identify all active, residency-trained orthopaedic surgeons within the United States. Sex, practice location, and academic degrees earned were recorded. Google searches were conducted to find professional Facebook, Twitter, Instagram, LinkedIn, and YouTube accounts along with institutional and personal websites. The primary outcome was the Social Media Index (SMI) score, an aggregate measure of social media use across key platforms. A Poisson regression model was constructed to compare SMI scores across joint-specific subspecializations: knee, hip, shoulder, elbow, foot & ankle, and wrist. Specialization in the treatment of each joint was collected using binary indicator variables. Since surgeons were specialized in multiple groups, comparisons were made between those who do and do not treat each joint. Results: In total, 2,573 surgeons within the United States met the inclusion criteria. 64.7% had ownership of at least 1 active account, with an average SMI score of 2.29 ± 1.59. Western practicing surgeons had a significantly greater presence on at least 1 website than those in the Northeast (P = .003, P < .001) and South (P = .005, P = .002). Social media use by knee, hip, shoulder, and elbow surgeons was greater relative to those who did not treat those respective joints (P < .001 for all). Poisson regression analysis demonstrated that knee, shoulder, or wrist specialization was a significant positive predictor of a greater SMI score (P ≤ .001 for all). Foot & ankle specialization was a negative predictor (P < .001), whereas hip (P = .125) and elbow (P = .077) were not significant predictors. Conclusions: Social media use widely varies across joint subspecialties within orthopaedic sports medicine. Knee and shoulder surgeons had a greater social media use than their counterparts, whereas foot & ankle surgeons had the lowest social media use. Clinical Relevance: Social media is a vital source of information for both patients and surgeons, providing a means for marketing, networking, and education. It is important to identify variations in social media use by orthopaedic surgeons by subspecialty and explore the differences.

9.
Heliyon ; 9(3): e13804, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895350

RESUMO

The rhizosphere microbes play a key role in plant nutrition and health. However, the interaction of beneficial microbes and Vigna unguiculata (lobia) production remains poorly understood. Thus, we aimed to isolate and characterize the soil microbes from the rhizosphere and develop novel microbial consortia for enhancing lobia production. Fifty bacterial strains were isolated from the rhizosphere soil samples of lobia. Finally, five effective strains (e.g., Pseudomonas sp. IESDJP-V1 and Pseudomonas sp. IESDJP-V2, Serratia marcescens IESDJP-V3, Bacillus cereus IESDJP-V4, Ochrobactrum sp. IESDJP-V5) were identified and molecularly characterized by 16 S rDNA gene amplification. All selected strains showed positive plant growth promoting (PGP) properties in broth culture. Based on morphological, biochemical, and plant growth promoting activities, five effective isolated strains and two collected strains (Azospirillum brasilense MTCC-4037 and Paenibacillus polymyxa BHUPSB17) were selected. The pot trials were conducted with seed inoculations of lobia (Vigna unguiculata) var. Kashi Kanchan with thirty treatments and three replications. The treatment combination T3 (Pseudomonas sp. IESDJP-V2), T14 (Pseudomonas sp. IESDJP-V2 + A. brasilense), T26 (Pseudomonas sp. IESDJP-V1+ B. cereus IESDJP-V4 + P. polymyxa) and T27 (IESDJP-V1+ IESDJP-V5+ A. brasilense) were recorded for enhancing plant growth attributes, yield, nutritional content like protein, total sugar, flavonoid and soil properties as compared to control and others. The effective treatments T3 (Pseudomonas sp.), T14 (Pseudomonas sp. IESDJP-V2 + A. brasilense), T26 (Pseudomonas sp. IESDJP-V1+ B. cereus IESDJP-V4 + P. polymyxa) and T27 (IESDJP-V1+ IESDJP-V5+ A. brasilense) recorded as potential PGPR consortium for lobia production. The treatment of single (Pseudomonas sp.), duel (IESDJP-V2 + A. brasilense) and triple combination (IESDJP-V1+ IESDJP-V4 + P. polymyxa) and (IESDJP-V1+ IESDJP-V5+ A. brasilense) can be further used for developing effective indigenous consortium for lobia production under sustainable farming practices. These PGPR bio-inoculant will be cost-effective, environment-friendly and socially acceptable.

10.
Nat Commun ; 14(1): 1706, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973286

RESUMO

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Assuntos
Cidades , Ecossistema , Internacionalidade , Parques Recreativos , Poluentes do Solo , Solo , Microbiota , Fatores Socioeconômicos , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Plásticos
11.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631668

RESUMO

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Assuntos
Ecossistema , Solo , Humanos , Parques Recreativos , Biodiversidade , Plantas
12.
Microbiome ; 10(1): 219, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503688

RESUMO

BACKGROUND: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth's largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. RESULTS: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. CONCLUSIONS: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome. Video Abstract.


Assuntos
Antibacterianos , Solo , Humanos , Antibacterianos/farmacologia , Ecologia , Fenótipo
13.
Bioresour Technol ; 366: 128159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272681

RESUMO

Biohydrogen (bio-H2) is regarded as a clean, non-toxic, energy carrier and has enormous potential for transforming fossil fuel-based economy. The development of a continuous high-rate H2 production with low-cost economics following an environmentally friendly approach should be admired for technology demonstration. Thus, the current review discusses the biotechnological and thermochemical pathways for H2 production. Thermochemical conversion involves pyrolysis and gasification routes, while biotechnological involves light-dependent processes (e.g., direct and indirect photolysis, photo/ dark fermentation strategies). Moreover, environmentally friendly technologies can be created while utilizing renewable energy sources including lignocellulosic, wastewater, sludge, microalgae, and others, which are still being developed. Lifecycle assessment (LCA) evaluates and integrates the economic, environmental, and social performance of H2 production from biomass, microalgae, and biochar. Moreover, system boundaries evaluation, i.e., global warming potential, acidification, eutrophication, and sensitivity analysis could lead in development of sustainable bioenergy transition with high economic and environmental benefits.


Assuntos
Hidrogênio , Microalgas , Hidrogênio/metabolismo , Fermentação , Biomassa , Microalgas/metabolismo , Combustíveis Fósseis , Biocombustíveis
14.
BioTech (Basel) ; 11(4)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36278560

RESUMO

Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant-water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.

15.
Nature ; 610(7933): 693-698, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224389

RESUMO

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mapeamento Geográfico , Microbiologia do Solo , Solo , Animais , Conservação dos Recursos Naturais/métodos , Solo/parasitologia , Invertebrados , Archaea
16.
Environ Microbiol ; 24(10): 4652-4669, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36059126

RESUMO

Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings.


Assuntos
Fusarium , Microbiota , Fusarium/genética , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo
17.
Biotechnol Rep (Amst) ; 35: e00748, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35719852

RESUMO

Plant hormones play an important role in growth, defence and plants productivity and there are several studies on their effects on plants. However, their role in humans and animals is limitedly studied. Recent studies suggest that plant hormone also works in mammalian systems, and have the potential to reduce human diseases such as cancer, diabetes, and also improve cell growth. Plant hormones such as indole-3-acetic acid (IAA) works as an antitumor, anti-cancer agent, gibberellins help in apoptosis, abscisic acid (ABA) as antidepressant compounds and regulation of glucose homeostasis whereas cytokinin works as an anti-ageing compound. The main aim of this review is to explore and correlate the relation of plant hormones and their important roles in animals, microbes and plants, and their interrelationships, emphasizing mainly human health. The most important and well-known plant hormones e.g., IAA, gibberellins, ABA, cytokinin and ethylene have been selected in this review to explore their effects on humans and animals.

18.
Hum Mutat ; 43(10): 1408-1429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35762218

RESUMO

Mutation in ATP7B gene causes Wilson disease (WD) that is characterized by severe hepatic and neurological symptoms. ATP7B localizes at the trans-Golgi Network (TGN) transporting copper to copper-dependent enzymes and traffics in apically targeted vesicles upon intracellular copper elevation. To decode the cellular underpinnings of WD manifestation we investigated copper-responsive polarized trafficking and copper transport activity of 15 WD causing point mutations in ATP7B. Amino-terminal mutations Gly85Val, Leu168Pro, and Gly591Asp displayed TGN and subapical localization whereas, Leu492Ser mislocalized at the basolateral region. The actuator domain mutation Gly875Arg shows retention in the endoplasmic reticulum (ER), Ala874Val and Leu795Phe show partial targeting to TGN and post-Golgi vesicles. The nucleotide-binding domain mutations His1069Gln and Leu1083Phe also display impaired targeting. The C-terminal mutations Leu1373Pro/Arg is arrested at ER but Ser1423Asn shows TGN localization. Transmembrane mutant Arg778Leu resides in ER and TGN while Arg969Gln is exclusively ER localized. Cellular Cu level does not alter the targeting of any of the studied mutations. Mutants that traffic to TGN exhibits biosynthetic function. Finally, we correlated cellular phenotypes with the clinical manifestation of the two most prevalent mutations; the early onset and more aggressive WD caused by Arg778Leu and the milder form of WD caused by mutation His1069Gln.


Assuntos
Proteínas de Transporte de Cátions , ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Estudos de Associação Genética , Degeneração Hepatolenticular/genética , Humanos , Mutação
19.
Sci Total Environ ; 836: 155550, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508232

RESUMO

The main aim of the present work was to explore culturable bacteria and to develop potential microbial consortium as bio-inoculants for enhancing plant productivity, nutritional content, and soil health. For this study, we selected two bacterial strains e.g., Enterobacter hormaechei (BHUJPCS-15) and Brevundimonas naejangsanensis (BHUJPVCRS-1) based on plant growth-promoting activities We developed a consortium of both strains and estimated plant growth promotion (PGP) activity which recorded significant better production of Indole-3-acetic acid (IAA) (61.53 µg/ml), siderophore (12.66%), ammonia (98.66 µg/ml), phosphate solubilisation (942.64 µg/ml), potassium solubilisation, and antagonistic activity against Fusarium sp. than individual bacterial strains. Bacterial consortium (E. hormaechei + B. naejangsanensis) treatment significantly enhanced plant growth attributes, grain yields, nutritional content in plant and seed, followed by E. hormaechei as compared to control. Seed treated with consortium recorded a significant increase in available N P K, enzymes and microbial communities in soils. Microbiome analysis revealed that the dominance of bacterial group and its functional properties is directly correlated with plant growth attributes, nutrient content, soil N P K, and enzyme activity. The relative abundance of bacterial phyla Proteobacteria (98%) was dominantly recorded in all treatments. The microbiome of seed and soil, treated with consortium (E. hormaechei + B. naejangsanensis) showed high amount of diversity of bacterial phyla Verrucomicrobia, Firmicutes, Bacteroidetes, Acidobacteria, Chloroflexi, and Proteobacteria than E. hormaechei (Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria) and control (Firmicutes, Bacteroidetes and Proteobacteria). In soil, root and shoot, E. hormaechei treatment enriched ligninolytic, nitrogen fixation, cellulolytic, nitrate ammonification among other pathways. The main finding is that the consortium treated seed of chickpea recorded significant enhancement of plant growth attributes, productivity, nutritional content, and soil health as well as microbial colonization in soil and seed part.


Assuntos
Cicer , Fusarium , Agricultura , Cicer/microbiologia , Desenvolvimento Vegetal , Plantas , Solo , Microbiologia do Solo
20.
Sci Total Environ ; 829: 154561, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35296421

RESUMO

Pyrethroids are a class of insecticides structurally similar to that of natural pyrethrins. The application of pyrethrins in agriculture and pest control lead to many kinds of environmental pollution affecting human health and loss of soil microbial population that affect soil fertility and health. Natural pyrethrins have been used since ancient times as insect repellers, and their synthetic versions especially type 2 pyrethroids could be highly toxic to humans. PBO (Piperonyl butoxide) is known to enhance the toxicity of prallethrin in humans due to the resistance in its metabolic degradation. Pyrethroids are also known to cause plasma biochemical profile changes in humans and they also lead to the production of high levels of reactive oxygen species. Further they are also known to increase SGPT activity in humans. Due to the toxicity of pyrethrins in water bodies, soils, and food products, there is an urgent need to develop sustainable approaches to reduce their levels in the respective fields, which are eco-friendly, economically viable, and socially acceptable for on-site remediation. Keeping this in view, an attempt has been made to analyse the advances and prospects in using pyrethrins and possible technologies to control their harmful effects. The pyrethroid types, composition and biochemistry of necessary pyrethroid insecticides have been discussed in detail, in the research paper, along with their effect on insects and humans. It also covers the impact of pyrethroids on different plants and soil microbial flora. The second part deals with the microbial degradation of the pyrethroids through different modes, i.e., bioaugmentation and biostimulation. Many microbes such as Acremonium, Aspergillus, Microsphaeropsis, Westerdykella, Pseudomonas, Staphylococcus have been used in the individual form for the degradation of pyrethroids, while some of them such as Bacillus are even used in the form of consortia.


Assuntos
Inseticidas , Piretrinas , Humanos , Inseticidas/química , Inseticidas/toxicidade , Butóxido de Piperonila , Piretrinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA