Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
New Phytol ; 231(4): 1644-1657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914919

RESUMO

Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.


Assuntos
Ferro , Triticum , Grão Comestível , Ácido Fítico , Sementes
2.
Front Microbiol ; 9: 1838, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186242

RESUMO

The phytopathogenic bacteria, Pseudomonas syringae pv. lapsa (P. syringae pv. lapsa) infects the staple food crop wheat. Metalloproteins play important roles in plant-pathogen interactions. Hence, the present work is aimed to predict and analyze the iron (Fe), zinc (Zn), and copper (Cu) binding proteins of P. syringae pv. lapsa which help in its growth, adaptation, survival and pathogenicity. A total of 232 Fe, 307 Zn, and 38 Cu-binding proteins have been identified. The functional annotation, subcellular localization and gene ontology enriched network analysis revealed their role in wide range of biological activities of the phytopathogen. Among the identified metalloproteins, a total of 29 Fe-binding, 31 Zn-binding, and 5 Cu-binding proteins were found to be secreted in nature. These putative secreted metalloproteins may perform diverse cellular and biological functions ranging from transport, response to oxidative stress, proteolysis, antimicrobial resistance, metabolic processes, protein folding and DNA repair. The observations obtained here may provide initial information required to draft new schemes to control microbial infections of staple food crops and will further help in developing sustainable agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA