Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4692, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948542

RESUMO

Huntington's disease is a neurodegenerative disease caused by an expanded polyQ stretch within Huntingtin (HTT) that renders the protein aggregation-prone, ultimately resulting in the formation of amyloid fibrils. A trimeric chaperone complex composed of Hsc70, DNAJB1 and Apg2 can suppress and reverse the aggregation of HTTExon1Q48. DNAJB1 is the rate-limiting chaperone and we have here identified and characterized the binding interface between DNAJB1 and HTTExon1Q48. DNAJB1 exhibits a HTT binding motif (HBM) in the hinge region between C-terminal domains (CTD) I and II and binds to the polyQ-adjacent proline rich domain (PRD) of soluble as well as aggregated HTT. The PRD of HTT represents an additional binding site for chaperones. Mutation of the highly conserved H244 of the HBM of DNAJB1 completely abrogates the suppression and disaggregation of HTT fibrils by the trimeric chaperone complex. Notably, this mutation does not affect the binding and remodeling of any other protein substrate, suggesting that the HBM of DNAJB1 is a specific interaction site for HTT. Overexpression of wt DNAJB1, but not of DNAJB1H244A can prevent the accumulation of HTTExon1Q97 aggregates in HEK293 cells, thus validating the biological significance of the HBM within DNAJB1.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Amiloide/química , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Agregados Proteicos
2.
J Chem Inf Model ; 60(12): 5832-5852, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33326239

RESUMO

We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Inteligência Artificial , Sítios de Ligação , Simulação por Computador , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Relação Estrutura-Atividade
3.
ChemRxiv ; 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-33200117

RESUMO

We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.

4.
Methods Enzymol ; 578: 373-428, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27497175

RESUMO

Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membrana Celular/química , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Transporte Biológico , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA