Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(1): 48-57, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110237

RESUMO

Molecular strategies that allow for reversible control of antibody activity have drawn considerable interest for both therapeutic and diagnostic applications. Protein M is a generic antibody-binding protein that binds to the Fv domain of IgGs and, in doing so, blocks antigen binding. However, the dissociation of protein M is essentially irreversible, which has precluded its use as an antibody affinity reagent and molecular mask to control antibody activity. Here, we show that introduction of 8 histidine residues on the Fv binding interface of protein M results in a variant that shows pH-switchable IgG binding. This protein M-8his variant provides an attractive and universal affinity resin for the purification of IgGs, antibody fragments (Fab and single-chain variable fragments (scFv)), and antibody conjugates. Moreover, protein M-8his enables the pH-dependent blocking of therapeutic antibodies, allowing the selective targeting of cells at pH 6.0.


Assuntos
Fragmentos de Imunoglobulinas , Afinidade de Anticorpos , Concentração de Íons de Hidrogênio
2.
ACS Nano ; 17(12): 11665-11678, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37283555

RESUMO

Decorating nanoparticles with antibodies (Ab) is a key strategy for targeted drug delivery and imaging. For this purpose, the orientation of the antibody on the nanoparticle is crucial to maximize fragment antibody-binding (Fab) exposure and thus antigen binding. Moreover, the exposure of the fragment crystallizable (Fc) domain may lead to the engagement of immune cells through one of the Fc receptors. Therefore, the choice of the chemistry for nanoparticle-antibody conjugation is key for the biological performance, and methods have been developed for orientation-selective functionalization. Despite the importance of this issue, there is a lack of direct methods to quantify the antibodies' orientation on the nanoparticle's surface. Here, we present a generic methodology that enables for multiplexed, simultaneous imaging of both Fab and Fc exposure on the surface of nanoparticles, based on super-resolution microscopy. Fab-specific Protein M and Fc-specific Protein G probes were conjugated to single stranded DNAs and two-color DNA-PAINT imaging was performed. Hereby, we quantitatively addressed the number of sites per particle and highlight the heterogeneity in the Ab orientation and compared the results with a geometrical computational model to validate data interpretation. Moreover, super-resolution microscopy can resolve particle size, allowing the study of how particle dimensions affect antibody coverage. We show that different conjugation strategies modulate the Fab and Fc exposure which can be tuned depending on the application of choice. Finally, we explored the biomedical importance of antibody domain exposure in antibody dependent cell mediated phagocytosis (ADCP). This method can be used universally to characterize antibody-conjugated nanoparticles, improving the understanding of relationships between structure and targeting capacities in targeted nanomedicine.


Assuntos
Anticorpos , Nanopartículas , Fagocitose , Microscopia , DNA
3.
Anal Chem ; 95(23): 8922-8931, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37253113

RESUMO

Immunoassays show great potential for the detection of low levels of cytokines, due to their high sensitivity and excellent specificity. There is a particular demand for biosensors that enable both high-throughput screening and continuous monitoring of clinically relevant cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα). To this end, we here introduce a novel bioluminescent immunoassay based on the ratiometric plug-and-play immunodiagnostics (RAPPID) platform, with an improved intrinsic signal-to-background and an >80-fold increase in the luminescent signal. The new dRAPPID assay, comprising a dimeric protein G adapter connected via a semiflexible linker, was applied to detect the secretion of IL-6 by breast carcinoma cells upon TNFα stimulation and the production of low concentrations of IL-6 (∼18 pM) in an endotoxin-stimulated human 3D muscle tissue model. Moreover, we integrated the dRAPPID assay in a newly developed microfluidic device for the simultaneous and continuous monitoring of changes in IL-6 and TNFα in the low-nanomolar range. The luminescence-based read-out and the homogeneous nature of the dRAPPID platform allowed for detection with a simple measurement setup, consisting of a digital camera and a light-sealed box. This permits the usage of the continuous dRAPPID monitoring chip at the point of need, without the requirement for complex or expensive detection techniques.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Humanos , Interleucina-6 , Imunoensaio/métodos , Testes Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA