Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(17): 6937-6945, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951295

RESUMO

Carbon nanothreads are a new one-dimensional sp3-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80-100 nm thickness of the prepared sample. Diffuse scattering in electron diffraction reveals that nanothreads are packed with axial and/or azimuthal disregistry between them. Layer lines in diffraction from annealed nanothreads provide the first evidence of translational order along their length, indicating that this solid-state reaction proceeds with some regularity. HREM also reveals bends and defects in nanothread crystals that can contribute to the broadening of their diffraction spots, and electron energy-loss spectroscopy confirms them to be primarily sp3-hybridized, with less than 27% sp2 carbon, most likely associated with partially saturated "degree-4" threads.

2.
Nano Lett ; 18(8): 4934-4942, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29954179

RESUMO

A one-dimensional (1D) sp3 carbon nanomaterial with high lateral packing order, known as carbon nanothreads, has recently been synthesized by slowly compressing and decompressing crystalline solid benzene at high pressure. The atomic structure of an individual nanothread has not yet been determined experimentally. We have calculated the 13C nuclear magnetic resonance (NMR) chemical shifts, chemical shielding tensors, and anisotropies of several axially ordered and disordered partially saturated and fully saturated nanothreads within density functional theory and systematically compared the results with experimental solid-state NMR data to assist in identifying the structures of the synthesized nanothreads. In the fully saturated threads, every carbon atom in each progenitor benzene molecule has bonded to a neighboring molecule (i.e., 6 bonds per molecule, a so-called "degree-6" nanothread), while the partially saturated threads examined retain a single double bond per benzene ring ("degree-4"). The most-parsimonious theoretical fit to the experimental 1D solid-state NMR spectrum, constrained by the measured chemical shift anisotropies and key features of two-dimensional NMR spectra, suggests a certain combination of degree-4 and degree-6 nanothreads as plausible components of this 1D sp3 carbon nanomaterial, with intriguing hints of a [4 + 2] cycloaddition pathway toward nanothread formation from benzene columns in the progenitor molecular crystal, based on the presence of nanothreads IV-7, IV-8, and square polymer in the minimal fit.

3.
J Am Chem Soc ; 139(45): 16343-16349, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040804

RESUMO

Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA