Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 5(15): 3002-3015, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34351390

RESUMO

Erythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors (TFs). Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a TF that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes. Consistent with an important role during erythropoiesis, knockdown of MAZ reduces α-globin expression in K562 cells and impairs differentiation in primary human erythroid cells. Genetic variants in the MAZ locus are associated with changes in clinically important human erythroid traits. Taken together, these findings reveal the zinc-finger TF MAZ to be a previously unrecognized regulator of the erythroid differentiation program.


Assuntos
Proteínas de Ligação a DNA , Eritropoese , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Eritroides/metabolismo , Eritropoese/genética , Regulação da Expressão Gênica , Humanos , Células K562 , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Blood Adv ; 5(3): 889-899, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560400

RESUMO

Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Medula Óssea , Transplante de Medula Óssea , Diferenciação Celular
3.
Cell Stem Cell ; 25(1): 137-148.e6, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31031138

RESUMO

Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation, generating self-renewing leukemic stem cells (LSCs). Here, we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function, including the tumor necrosis factor receptor Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly, YTHDF2 is not essential for normal HSC function, with YTHDF2 deficiency actually enhancing HSC activity. Thus, we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.


Assuntos
Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Autorrenovação Celular , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Células THP-1
4.
Front Genet ; 10: 1386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117424

RESUMO

Bovine tuberculosis is caused by infection with Mycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter M. bovis and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density genome-wide association study (GWAS) data, which revealed genomic regions associated with resilience to infection with M. bovis in cattle. Through integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.

5.
Epigenetics Chromatin ; 11(1): 59, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30292235

RESUMO

BACKGROUND: The mechanism by which protein complexes interact to regulate the deposition of post-translational modifications of histones remains poorly understood. This is particularly important at regulatory regions, such as CpG islands (CGIs), which are known to recruit Trithorax (TrxG) and Polycomb group proteins. The CxxC zinc finger protein 1 (CFP1, also known as CGBP) is a subunit of the TrxG SET1 protein complex, a major catalyst of trimethylation of H3K4 (H3K4me3). RESULTS: Here, we used ChIP followed by high-throughput sequencing (ChIP-seq) to analyse genomic occupancy of CFP1 in two human haematopoietic cell types. We demonstrate that CFP1 occupies CGIs associated with active transcription start sites (TSSs), and is mutually exclusive with H3K27 trimethylation (H3K27me3), a marker of polycomb repressive complex 2. Strikingly, rather than being restricted to active CGI TSSs, CFP1 also occupies a substantial fraction of active non-CGI TSSs and enhancers of transcribed genes. However, relative to other TrxG subunits, CFP1 was specialised to TSSs. Finally, we found enrichment of CpG-containing DNA motifs in CFP1 peaks at CGI promoters. CONCLUSIONS: We found that CFP1 is not solely recruited to CpG islands as it was originally defined, but also other regions including non-CpG island promoters and enhancers.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Linhagem Celular , Células Cultivadas , Ilhas de CpG , Humanos , Ligação Proteica , Transativadores
7.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263216

RESUMO

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Assuntos
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Cirrose Hepática/patologia , Fígado/lesões , Macrófagos/imunologia , Fagocitose/imunologia , Fator de Transcrição STAT3/metabolismo , Transferência Adotiva , Animais , Apoptose/imunologia , Humanos , Fígado/patologia , Macrófagos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/imunologia , Regeneração/fisiologia , Peixe-Zebra/embriologia
9.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28202494

RESUMO

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Assuntos
Fumarato Hidratase/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Feminino , Fumaratos/metabolismo , Hematopoese , Histonas/metabolismo , Leucemia Mieloide Aguda/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Consumo de Oxigênio
10.
J Pathol ; 238(2): 333-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26419725

RESUMO

Over the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease-causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer.


Assuntos
Epigênese Genética/genética , Doenças Genéticas Inatas/genética , Mutação/genética , Neoplasias/genética , Animais , DNA de Neoplasias/genética , Elementos Facilitadores Genéticos/genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
11.
Trends Genet ; 31(12): 696-708, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26599498

RESUMO

Regulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Ativação Transcricional
12.
PLoS Genet ; 10(10): e1004668, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330308

RESUMO

Over the last three decades, studies of the α- and ß-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation. The multiple roles attributed to remote regulatory elements that have emerged from these studies will be discussed.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , alfa-Globinas/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , alfa-Globinas/metabolismo
13.
Nucleic Acids Res ; 42(13): 8356-68, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24990380

RESUMO

ATRX and MeCP2 belong to an expanding group of chromatin-associated proteins implicated in human neurodevelopmental disorders, although their gene-regulatory activities are not fully resolved. Loss of ATRX prevents full repression of an imprinted gene network in the postnatal brain and in this study we address the mechanistic aspects of this regulation. We show that ATRX binds many imprinted domains individually but that transient co-localization between imprinted domains in the nuclei of neurons does not require ATRX. We demonstrate that MeCP2 is required for ATRX recruitment and that deficiency of either ATRX or MeCP2 causes decreased frequency of long-range chromatin interactions associated with altered nucleosome density at CTCF-binding sites and reduced CTCF occupancy. These findings indicate that MeCP2 and ATRX regulate gene expression at a subset of imprinted domains by maintaining a nucleosome configuration conducive to CTCF binding and to the maintenance of higher order chromatin structure.


Assuntos
Encéfalo/metabolismo , Cromatina/química , DNA Helicases/fisiologia , Impressão Genômica , Proteína 2 de Ligação a Metil-CpG/fisiologia , Proteínas Nucleares/fisiologia , Nucleossomos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Encéfalo/crescimento & desenvolvimento , Fator de Ligação a CCCTC , Proteínas de Ligação ao Cálcio , Núcleo Celular/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Deleção de Genes , Fator de Crescimento Insulin-Like II/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , Proteína Nuclear Ligada ao X
14.
BMC Mol Biol ; 15: 8, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24885809

RESUMO

BACKGROUND: Krüppel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by Krüppel-like Factor 1 (KLF1). Noting that KLF1 binds α-globin gene regulatory sequences during erythroid maturation, we sought to determine whether KLF3 also interacts with the α-globin locus to regulate transcription. RESULTS: We found that expression of a human transgenic α-globin reporter gene is markedly up-regulated in fetal and adult erythroid cells of Klf3-/- mice. Inspection of the mouse and human α-globin promoters revealed a number of canonical KLF-binding sites, and indeed, KLF3 was shown to bind to these regions both in vitro and in vivo. Despite these observations, we did not detect an increase in endogenous murine α-globin expression in Klf3-/- erythroid tissue. However, examination of murine embryonic fibroblasts lacking KLF3 revealed significant de-repression of α-globin gene expression. This suggests that KLF3 may contribute to the silencing of the α-globin locus in non-erythroid tissue. Moreover, ChIP-Seq analysis of murine fibroblasts demonstrated that across the locus, KLF3 does not occupy the promoter regions of the α-globin genes in these cells, but rather, binds to upstream, DNase hypersensitive regulatory regions. CONCLUSIONS: These findings reveal that the occupancy profile of KLF3 at the α-globin locus differs in erythroid and non-erythroid cells. In erythroid cells, KLF3 primarily binds to the promoters of the adult α-globin genes, but appears dispensable for normal transcriptional regulation. In non-erythroid cells, KLF3 distinctly binds to the HS-12 and HS-26 elements and plays a non-redundant, albeit modest, role in the silencing of α-globin expression.


Assuntos
Células Eritroides/metabolismo , Regulação da Expressão Gênica/genética , Fatores de Transcrição Kruppel-Like/genética , alfa-Globinas/genética , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Células K562 , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , alfa-Globinas/metabolismo
15.
Philos Trans R Soc Lond B Biol Sci ; 368(1620): 20120361, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650635

RESUMO

We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis-acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10-1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis-regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.


Assuntos
Loci Gênicos , Genoma Humano , Sequências Reguladoras de Ácido Nucleico , alfa-Globinas/metabolismo , Fator de Ligação a CCCTC , Montagem e Desmontagem da Cromatina , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 16/metabolismo , Redes Reguladoras de Genes , Humanos , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Proteínas Repressoras/genética , alfa-Globinas/genética , Globinas beta/metabolismo
16.
Hum Mutat ; 34(8): 1140-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23616472

RESUMO

Although mutations causing monogenic disorders most frequently lie within the affected gene, sequence variation in complex disorders is more commonly found in noncoding regions. Furthermore, recent genome- wide studies have shown that common DNA sequence variants in noncoding regions are associated with "normal" variation in gene expression resulting in cell-specific and/or allele-specific differences. The mechanism by which such sequence variation causes changes in gene expression is largely unknown. We have addressed this by studying natural variation in the binding of key transcription factors (TFs) in the well-defined, purified cell system of erythropoiesis. We have shown that common polymorphisms frequently directly perturb the binding sites of key TFs, and detailed analysis shows how this causes considerable (~10-fold) changes in expression from a single allele in a tissue-specific manner. We also show how a SNP, located at some distance from the recognized TF binding site, may affect the recruitment of a large multiprotein complex and alter the associated chromatin modification of the variant regulatory element. This study illustrates the principles by which common sequence variation may cause changes in tissue-specific gene expression, and suggests that such variation may underlie an individual's propensity to develop complex human genetic diseases.


Assuntos
Células Eritroides/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nucleosídeo Difosfato Quinase D/genética , Nucleosídeo Difosfato Quinase D/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico
17.
Mol Cell ; 45(4): 447-58, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22264824

RESUMO

A substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host gene's structure. meRNAs make a substantial and unanticipated contribution to the complexity of the transcriptome, appearing as alternative isoforms of the host gene. The low protein-coding potential of meRNAs suggests that many meRNAs may be byproducts of enhancer activation or underlie as-yet-unidentified RNA-encoded functions. Distinguishing between meRNAs and mRNAs will transform our interpretation of dynamic changes in transcription both at the level of individual genes and of the genome as a whole.


Assuntos
Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/fisiologia , Animais , Células Cultivadas , Células Eritroides , Camundongos , Poli A , RNA/química , RNA/fisiologia , Isoformas de RNA/química , RNA Mensageiro/química , RNA Mensageiro/fisiologia , Transcriptoma
18.
EMBO J ; 31(2): 317-29, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22056776

RESUMO

The role of DNA sequence in determining chromatin state is incompletely understood. We have previously demonstrated that large chromosomal segments from human cells recapitulate their native chromatin state in mouse cells, but the relative contribution of local sequences versus their genomic context remains unknown. In this study, we compare orthologous chromosomal regions for which the human locus establishes prominent sites of Polycomb complex recruitment in pluripotent stem cells, whereas the corresponding mouse locus does not. Using recombination-mediated cassette exchange at the mouse locus, we establish the primacy of local sequences in the encoding of chromatin state. We show that the signal for chromatin bivalency is redundantly encoded across a bivalent domain and that this reflects competition between Polycomb complex recruitment and transcriptional activation. Furthermore, our results suggest that a high density of unmethylated CpG dinucleotides is sufficient for vertebrate Polycomb recruitment. This model is supported by analysis of DNA methyltransferase-deficient embryonic stem cells.


Assuntos
Ilhas de CpG/fisiologia , Regulação da Expressão Gênica/genética , Proteínas Repressoras/metabolismo , alfa-Globinas/genética , Animais , Células Cultivadas/metabolismo , Cromatina/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 16 , Metilação de DNA , DNA Recombinante/genética , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/metabolismo , Proteínas do Grupo Polycomb , Recombinação Genética , Sequências Reguladoras de Ácido Nucleico , Especificidade da Espécie , Transcrição Gênica
19.
Genes Dev ; 25(15): 1583-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21828268

RESUMO

Remote distal enhancers may be located tens or thousands of kilobases away from their promoters. How they control gene expression is still poorly understood. Here, we analyze the influence of a remote enhancer on the balance between repression (Polycomb-PcG) and activation (Trithorax-TrxG) of a developmentally regulated gene associated with a CpG island. We reveal its essential, nonredundant role in clearing the PcG complex and H3K27me3 from the CpG island. In the absence of the enhancer, the H3K27me3 demethylase (JMJD3) is not recruited to the CpG island. We propose a new role of long-range regulatory elements in removing repressive PcG complexes.


Assuntos
Elementos Facilitadores Genéticos/fisiologia , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Ilhas de CpG , Eritropoese/fisiologia , Regulação da Expressão Gênica , Humanos , Proteínas do Grupo Polycomb , Ligação Proteica , Proteínas Metiltransferases/metabolismo
20.
Epigenetics Chromatin ; 4(1): 9, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645363

RESUMO

BACKGROUND: In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3) lineage control genes while 'poising' (H3K4me3) them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined. RESULTS: Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3. CONCLUSIONS: While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA