Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 786, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945569

RESUMO

Climate change, energy system transitions, and socioeconomic change are compounding influences affecting the growth of electricity demand. While energy efficiency initiatives and distributed resources can address a significant amount of this demand, the United States will likely still need new utility-scale generation resources. The energy sector uses capacity expansion planning models to determine the aggregate need for new generation, but these models are typically at the state or regional scale and are not equipped to address the wide range of location- and technology-specific issues that are increasingly a factor in power plant siting. To help address these challenges, we have developed the Geospatial Raster Input Data for Capacity Expansion Regional Feasibility (GRIDCERF) data package, a high-resolution product to evaluate siting suitability for renewable and non-renewable power plants in the conterminous United States. GRIDCERF offers 264 suitability layers for use with 56 power plant technologies in a harmonized format that can be easily ingested by geospatially-enabled modeling software allowing for customization to robustly address science objectives when evaluating varying future conditions.

3.
Sci Data ; 10(1): 201, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041220

RESUMO

Water usage is closely linked with societal goals that are both local and global in scale, such as sustainable development and economic growth. It is therefore of value, particularly for long-term planning, to understand how future sectoral water usage could evolve on a global scale at fine resolution. Additionally, future water usage could be strongly shaped by global forces, such as socioeconomic and climate change, and the multi-sector dynamic interactions those forces create. We generate a novel global gridded monthly sectoral water withdrawal and consumption dataset at 0.5° resolution for 2010-2100 for a diverse range of 75 scenarios. The scenarios are harmonized with the five Shared Socioeconomic Pathways (SSPs) and four Representative Concentration Pathways (RCPs) scenarios to support its usage in studies evaluating the implications of uncertain human and earth system change for future global and regional dynamics. To generate the data, we couple the Global Change Analysis Model (GCAM) with a land use spatial downscaling model (Demeter), a global hydrologic framework (Xanthos), and a water withdrawal downscaling model (Tethys).


Assuntos
Mudança Climática , Água , Humanos , Fatores Socioeconômicos , Previsões
4.
Sci Data ; 10(1): 187, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024517

RESUMO

Land surface models such as the Community Land Model Version 5 (CLM5) are essential tools for simulating the behavior of the terrestrial system. Despite the extensive application of CLM5, limited attention has been paid to the underlying uncertainties associated with its hydrological parameters and how these uncertainties affect water resource applications. To address this long-standing issue, we use five meteorological datasets to conduct a comprehensive hydrological parameter uncertainty characterization of CLM5 over the hydroclimatic gradients of the conterminous United States. Key datasets produced from the uncertainty characterization experiment include: a benchmark dataset of CLM5 default hydrological performance, parameter sensitivities for 28 hydrological metrics, and large-ensemble outputs for CLM5 hydrological predictions. The presented datasets will assist CLM5 calibration and support broad applications, such as evaluating drought and flood vulnerabilities. The datasets can be used to identify the hydroclimatological conditions under which parametric uncertainties demonstrate substantial effects on hydrological predictions and clarify where further investigations are needed to understand how hydrological prediction uncertainties interact with other Earth system processes.


Assuntos
Hidrologia , Rios , Incerteza , Recursos Hídricos , Inundações
5.
Nat Commun ; 12(1): 7254, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903744

RESUMO

Drinking water supplies of cities are exposed to potential contamination arising from land use and other anthropogenic activities in local and distal source watersheds. Because water quality sampling surveys are often piecemeal, regionally inconsistent, and incomplete with respect to unregulated contaminants, the United States lacks a detailed comparison of potential source water contamination across all of its large cities. Here we combine national-scale geospatial datasets with hydrologic simulations to compute two metrics representing potential contamination of water supplies from point and nonpoint sources for over a hundred U.S. cities. We reveal enormous diversity in anthropogenic activities across watersheds with corresponding disparities in the potential contamination of drinking water supplies to cities. Approximately 5% of large cities rely on water that is composed primarily of runoff from non-pristine lands (e.g., agriculture, residential, industrial), while four-fifths of all large cities that withdraw surface water are exposed to treated wastewater in their supplies.


Assuntos
Água Potável/análise , Poluição da Água/análise , Abastecimento de Água , Efeitos Antropogênicos , Cidades , Água Potável/normas , Monitoramento Ambiental , Humanos , Hidrologia , Modelos Teóricos , Estados Unidos , Águas Residuárias/análise , Poluição da Água/prevenção & controle , Purificação da Água , Qualidade da Água , Abastecimento de Água/métodos , Abastecimento de Água/normas
6.
Nat Commun ; 12(1): 1276, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627651

RESUMO

Climate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12-114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower-a primary focus of previous studies-significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.

7.
Sci Data ; 7(1): 320, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009403

RESUMO

Global future land use (LU) is an important input for Earth system models for projecting Earth system dynamics and is critical for many modeling studies on future global change. Here we generated a new global gridded LU dataset using the Global Change Analysis Model (GCAM) and a land use spatial downscaling model, named Demeter, under the five Shared Socioeconomic Pathways (SSPs) and four Representative Concentration Pathways (RCPs) scenarios. Compared to existing similar datasets, the presented dataset has a higher spatial resolution (0.05° × 0.05°) and spreads under a more comprehensive set of SSP-RCP scenarios (in total 15 scenarios), and considers uncertainties from the forcing climates. We compared our dataset with the Land Use Harmonization version 2 (LUH2) dataset and found our results are in general spatially consistent with LUH2. The presented dataset will be useful for global Earth system modeling studies, especially for the analysis of the impacts of land use and land cover change and socioeconomics, as well as the characterizing the uncertainties associated with these impacts.

8.
Proc Natl Acad Sci U S A ; 112(34): 10635-40, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26240363

RESUMO

There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Política Pública , Abastecimento de Água , Previsões , Água Doce , Aquecimento Global , Água Subterrânea , Modelos Teóricos , Fatores Socioeconômicos , Estados Unidos , Ciclo Hidrológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA