Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390000

RESUMO

Numerous factors influence the timing of spring migration in birds, yet the relative importance of intrinsic and extrinsic variables on migration initiation remains unclear. To test for interactions among weather, migration distance, parasitism, and physiology in determining spring departure date, we used the Dark-eyed Junco (Junco hyemalis) as a model migratory species known to harbor diverse and common haemosporidian parasites. Prior to spring migration departure from their wintering grounds in Indiana, USA, we quantified the intrinsic variables of fat, body condition (i.e., mass ~ tarsus residuals), physiological stress (i.e., ratio of heterophils to lymphocytes), cellular immunity (i.e., leukocyte composition and total count), migration distance (i.e., distance to the breeding grounds) using stable isotopes of hydrogen from feathers, and haemosporidian parasite intensity. We then attached nanotags to determine the timing of spring migration departure date using the Motus Wildlife Tracking System. We used additive Cox proportional hazard mixed models to test how risk of spring migratory departure was predicted by the combined intrinsic measures, along with meteorological predictors on the evening of departure (i.e., average wind speed and direction, relative humidity, and temperature). Model comparisons found that the best predictor of spring departure date was average nightly wind direction and a principal component combining relative humidity and temperature. Juncos were more likely to depart for spring migration on nights with largely southwestern winds and on warmer and drier evenings (relative to cooler and more humid evenings). Our results indicate that weather conditions at take-off are more critical to departure decisions than the measured physiological and parasitism variables.

2.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273516

RESUMO

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Assuntos
Tentilhões , Muscidae , Parasitos , Animais , Humanos , Tentilhões/parasitologia , Equador
3.
Mol Ecol ; 32(22): 6059-6069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837269

RESUMO

Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.


Assuntos
Tentilhões , Microbioma Gastrointestinal , Muscidae , Passeriformes , Animais , Urbanização , Tentilhões/microbiologia , Bactérias
4.
Zookeys ; 1169: 65-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328029

RESUMO

Bat flies (Diptera: Nycteribiidae and Streblidae) are hematophagous ectoparasites of bats characterized by viviparous pupiparity and generally high host specificity. Nycteribiid bat flies are wingless, morphologically constrained, and are most diverse in the Eastern Hemisphere. Africa hosts approximately 22% of global bat biodiversity and nearly one-third of all African bat species occur in Kenya, one of Africa's most bat-rich countries. However, records of nycteribiid bat fly diversity in Kenya remain sparse and unconsolidated. This paper combines all past species records of nycteribiid bat flies with records from a survey of 4,255 Kenyan bats across 157 localities between 2006 and 2015. A total of seven nycteribiid genera and 17 species are recorded, with seven species from the recent 'Bats of Kenya' surveys representing previously undocumented country records. Host associations and geographic distributions based on all available records are also described. This comprehensive species catalog addresses and further emphasizes the need for similar investigations of nycteribiid biodiversity across Africa.

5.
Parasit Vectors ; 15(1): 392, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303252

RESUMO

BACKGROUND: The recognition and delineation of morphologically indistinguishable cryptic species can have broad implications for wildlife conservation, disease ecology and accurate estimates of biodiversity. Parasites are intriguing in the study of cryptic speciation because unique evolutionary pressures and diversifying factors are generated by ecological characteristics of host-parasite relationships, including host specificity. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats that generally exhibit high host specificity. One rare exception is Penicillidia fulvida (Diptera: Nycteribiidae), an African bat fly found in association with many phylogenetically distant hosts. One explanation for P. fulvida's extreme polyxeny is that it may represent a complex of host-specific yet cryptic species, an increasingly common finding in molecular genetic studies of supposed generalist parasites. METHODS: A total of 65 P. fulvida specimens were collected at 14 localities across Kenya, from bat species representing six bat families. Mitochondrial cytochrome c oxidase subunit 1 (COI) and nuclear 28S ribosomal RNA (rRNA) sequences were obtained from 59 specimens and used to construct Bayesian and maximum likelihood phylogenies. Analysis of molecular variance was used to determine how genetic variation in P. fulvida was allocated among host taxa. RESULTS: The 28S rRNA sequences studied were invariant within P. fulvida. Some genetic structure was present in the COI sequence data, but this could be more parsimoniously explained by geography than host family. CONCLUSIONS: Our results support the status of P. fulvida as a rare example of a single bat fly species with primary host associations spanning multiple bat families. Gene flow among P. fulvida utilizing different host species may be promoted by polyspecific roosting behavior in bats, and host preference may also be malleable based on bat assemblages occupying shared roosts. The proclivity of generalist parasites to switch hosts makes them more likely to vector or opportunistically transmit pathogens across host species boundaries. Consequently, the presence of polyxenous bat flies is an important consideration to disease ecology as bat flies become increasingly known to be associated with bat pathogens.


Assuntos
Quirópteros , Dípteros , Animais , Especificidade de Hospedeiro , Teorema de Bayes , Interações Hospedeiro-Parasita , Filogenia , Dípteros/genética
6.
Ecol Evol ; 11(10): 5038-5048, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025990

RESUMO

Urbanization is expanding worldwide with major consequences for organisms. Anthropogenic factors can reduce the fitness of animals but may have benefits, such as consistent human food availability. Understanding anthropogenic trade-offs is critical in environments with variable levels of natural food availability, such as the Galápagos Islands, an area of rapid urbanization. For example, during dry years, the reproductive success of bird species, such as Darwin's finches, is low because reduced precipitation impacts food availability. Urban areas provide supplemental human food to finches, which could improve their reproductive success during years with low natural food availability. However, urban finches might face trade-offs, such as the incorporation of anthropogenic debris (e.g., string, plastic) into their nests, which may increase mortality. In our study, we determined the effect of urbanization on the nesting success of small ground finches (Geospiza fuliginosa; a species of Darwin's finch) during a dry year on San Cristóbal Island. We quantified nest building, egg laying and hatching, and fledging in an urban and nonurban area and characterized the anthropogenic debris in nests. We also documented mortalities including nest trash-related deaths and whether anthropogenic materials directly led to entanglement- or ingestion-related nest mortalities. Overall, urban finches built more nests, laid more eggs, and produced more fledglings than nonurban finches. However, every nest in the urban area contained anthropogenic material, which resulted in 18% nestling mortality while nonurban nests had no anthropogenic debris. Our study showed that urban living has trade-offs: urban birds have overall higher nesting success during a dry year than nonurban birds, but urban birds can suffer mortality from anthropogenic-related nest-materials. These results suggest that despite potential costs, finches benefit overall from urban living and urbanization may buffer the effects of limited resource availability in the Galápagos Islands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA