Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1144, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949928

RESUMO

Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA). Strikingly, ~42% of organisms contain only PRC1 or PRC2, showing that their evolution since LECA is largely uncoupled. The identification of ncPRC1-defining subunits in unicellular relatives of animals and fungi suggests ncPRC1 originated before cPRC1, and we propose a scenario for the evolution of cPRC1 from ncPRC1. Together, our results suggest that crosstalk between these complexes is a secondary development in evolution.


Assuntos
Histonas , Complexo Repressor Polycomb 1 , Animais , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Ubiquitinação
2.
Cell Death Dis ; 14(5): 337, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217493

RESUMO

Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.


Assuntos
MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Supressoras de Tumor , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas Supressoras de Tumor/genética
3.
Genes Dev ; 36(19-20): 1043-1045, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460465

RESUMO

The Polycomb system modulates chromatin structure to maintain gene repression during cell differentiation. Polycomb repression involves methylation of histone H3K27 (H3K27me3) by Polycomb repressive complex 2 (PRC2), monoubiquitylation of H2A (H2Aub1) by noncanonical PRC1 (ncPRC1), and chromatin compaction by canonical PRC1 (cPRC1), which is independent of its enzymatic activity. Puzzlingly, Polycomb repression also requires deubiquitylation of H2Aub1 by Polycomb repressive deubiquitinase (PR-DUB). In this issue of Genes & Development, Bonnet and colleagues (pp. 1046-1061) resolve this paradox by showing that high levels of H2Aub1 in Drosophila lacking PR-DUB activity promotes open chromatin and gene expression in spite of normal H3K27me3 levels and PRC binding. Pertinently, gene repression is restored by concomitant loss of PRC1 E3 ubiquitin ligase activity but depends on its chromatin compaction activity. These findings suggest that PR-DUB ensures just-right levels of H2Aub1 to allow chromatin compaction by cPRC1.


Assuntos
Proteínas de Drosophila , Histonas , Animais , Proteínas do Grupo Polycomb/genética , Proteínas de Drosophila/genética , Drosophila/genética , Complexo Repressor Polycomb 1/genética , Cromatina
4.
Sci Adv ; 8(44): eabq7598, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332031

RESUMO

Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.

5.
Elife ; 102021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313222

RESUMO

ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/genética , Histonas/metabolismo , Hidrólise , Nucleossomos/metabolismo
6.
Genes Dev ; 33(15-16): 936-959, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123059

RESUMO

Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Neoplasias/fisiopatologia , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos
7.
Dev Cell ; 43(2): 119-121, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065303

RESUMO

Mitotic chromosome condensation is believed to be incompatible with transcription. Palozola et al. (2017) now report in Science that a transcription program is maintained during mitosis and that transcriptional re-activation at mitotic exit is geared to support cell growth rather than cell identity.


Assuntos
Cromossomos , Mitose , Proliferação de Células , Segregação de Cromossomos , Ativação Transcricional
8.
Cell Rep ; 20(1): 61-75, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683324

RESUMO

The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Neoplasias Bucais/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Células Cultivadas , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Metilação , Neoplasias Bucais/genética , Processamento de Proteína Pós-Traducional
9.
Genes Dev ; 30(21): 2345-2369, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881599

RESUMO

To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease.


Assuntos
Núcleo Celular/enzimologia , Regulação da Expressão Gênica/genética , Metabolismo/genética , Acetilcoenzima A/biossíntese , Acetilcoenzima A/metabolismo , Animais , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Histonas/metabolismo , Humanos , NAD/metabolismo , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Células-Tronco Pluripotentes/metabolismo
10.
Cell Rep ; 13(7): 1310-1318, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26549447

RESUMO

During spermatogenesis, the paternal genome is repackaged into a non-nucleosomal, highly compacted chromatin structure. Bioinformatic analysis revealed that Drosophila sperm chromatin proteins are characterized by a motif related to the high-mobility group (HMG) box, which we termed male-specific transcript (MST)-HMG box. MST77F is a MST-HMG-box protein that forms an essential component of sperm chromatin. The deposition of MST77F onto the paternal genome requires the chaperone function of tNAP, a testis-specific NAP protein. MST77F, in turn, enables the stable incorporation of MST35Ba and MST35Bb into sperm chromatin. Following MST-HMG-box protein deposition, the ATP-dependent chromatin remodeler ISWI mediates the appropriate organization of sperm chromatin. Conversely, at fertilization, maternal ISWI targets the paternal genome and drives its repackaging into de-condensed nucleosomal chromatin. Failure of this transition in ISWI mutant embryos is followed by mitotic defects, aneuploidy, and haploid embryonic divisions. Thus, ISWI enables bi-directional transitions between two fundamentally different forms of chromatin.


Assuntos
Adenosina Trifosfatases/fisiologia , Genoma de Inseto , Testículo/ultraestrutura , Fatores de Transcrição/fisiologia , Adenosina Trifosfatases/química , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/química , Histonas/metabolismo , Masculino , Mitose , Ligação Proteica , Espermatozoides/fisiologia , Testículo/metabolismo , Fatores de Transcrição/química
11.
Cell Rep ; 9(3): 841-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25437540

RESUMO

Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.


Assuntos
Variações do Número de Cópias de DNA/genética , Replicação do DNA , Drosophila melanogaster/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Dosagem de Genes , Espectrometria de Massas , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
12.
Dev Cell ; 31(5): 521-2, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490262

RESUMO

The addition of the monosaccharide O-GlcNAc is one of the most mysterious posttranslational modifications. In this issue of Developmental Cell, Gambetta and Müller (2014) show that O-GlcNAcylation of the Drosophila Polycomb group (PcG) protein Polyhomeotic (PH) is essential for homeotic gene silencing. O-GlcNAcylation counteracts nonproductive aggregation of PH, allowing transcriptional repression.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Repressoras/metabolismo , Animais , Humanos
13.
PLoS One ; 9(11): e113255, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415640

RESUMO

Chromatin dependent activation and repression of transcription is regulated by the histone modifying enzymatic activities of the trithorax (trxG) and Polycomb (PcG) proteins. To investigate the mechanisms underlying their mutual antagonistic activities we analyzed the function of Drosophila dRYBP, a conserved PcG- and trxG-associated protein. We show that dRYBP is itself ubiquitylated and binds ubiquitylated proteins. Additionally we show that dRYBP maintains H2A monoubiquitylation, H3K4 monomethylation and H3K36 dimethylation levels and does not affect H3K27 trimethylation levels. Further we show that dRYBP interacts with the repressive SCE and dKDM2 proteins as well as the activating dBRE1 protein. Analysis of homeotic phenotypes and post-translationally modified histones levels show that dRYBP antagonizes dKDM2 and dBRE1 functions by respectively preventing H3K36me2 demethylation and H2B monoubiquitylation. Interestingly, our results show that inactivation of dBRE1 produces trithorax-like related homeotic transformations, suggesting that dBRE1 functions in the regulation of homeotic genes expression. Our findings indicate that dRYBP regulates morphogenesis by counteracting transcriptional repression and activation. Thus, they suggest that dRYBP may participate in the epigenetic plasticity important during normal and pathological development.


Assuntos
Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas Repressoras/genética , Animais , Western Blotting , Linhagem Celular , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Epistasia Genética , Histonas/metabolismo , Lisina/metabolismo , Metilação , Modelos Genéticos , Mutação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
14.
Mol Cell ; 53(3): 458-70, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24462112

RESUMO

Nucleotide biosynthesis is fundamental to normal cell proliferation as well as to oncogenesis. Tumor suppressor p53, which prevents aberrant cell proliferation, is destabilized through ubiquitylation by MDM2. Ubiquitin-specific protease 7 (USP7) plays a dualistic role in p53 regulation and has been proposed to deubiquitylate either p53 or MDM2. Here, we show that guanosine 5'-monophosphate synthase (GMPS) is required for USP7-mediated stabilization of p53. Normally, most GMPS is sequestered in the cytoplasm, separated from nuclear USP7 and p53. In response to genotoxic stress or nucleotide deprivation, GMPS becomes nuclear and facilitates p53 stabilization by promoting its transfer from MDM2 to a GMPS-USP7 deubiquitylation complex. Intriguingly, cytoplasmic sequestration of GMPS requires ubiquitylation by TRIM21, a ubiquitin ligase associated with autoimmune disease. These results implicate a classic nucleotide biosynthetic enzyme and a ubiquitin ligase, better known for its role in autoimmune disease, in p53 control.


Assuntos
Carbono-Nitrogênio Ligases/fisiologia , Nucleotídeos/biossíntese , Ribonucleoproteínas/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Neoplasias da Mama/metabolismo , Carbono-Nitrogênio Ligases/análise , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Dano ao DNA , Drosophila/genética , Feminino , Células HEK293 , Humanos , Ribonucleoproteínas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/fisiologia , Peptidase 7 Específica de Ubiquitina , Ubiquitinação
15.
PLoS Genet ; 9(9): e1003719, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086141

RESUMO

Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Centrômero/genética , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Genoma de Inseto , Mitose/genética , Proteínas Nucleares/genética , Proteína 1 de Modelagem do Nucleossomo/genética , Ligação Proteica , Proteína Fosfatase 2/genética , Coesinas
16.
Cell Rep ; 4(1): 59-65, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810557

RESUMO

One of the most dramatic forms of chromatin reorganization occurs during spermatogenesis, when the paternal genome is repackaged from a nucleosomal to a protamine-based structure. We assessed the role of the canonical histone chaperone CAF1 in Drosophila spermatogenesis. In this process, CAF1 does not behave as a complex, but its subunits display distinct chromatin dynamics. During histone-to-protamine replacement, CAF1-p180 dissociates from the DNA while CAF1-p75 binds and stays on as a component of sperm chromatin. Association of CAF1-p75 with the paternal genome depends on CAF1-p180 and protamines. Conversely, CAF1-p75 binds protamines and is required for their incorporation into sperm chromatin. Histone removal, however, occurs independently of CAF1 or protamines. Thus, CAF1-p180 and CAF1-p75 function in a temporal hierarchy during sperm chromatin assembly, with CAF1-p75 acting as a protamine-loading factor. These results show that CAF1 subunits mediate the assembly of two fundamentally different forms of chromatin.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Protaminas/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Masculino , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Espermatozoides/metabolismo
17.
Genes Dev ; 26(23): 2604-20, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23166019

RESUMO

Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase/genética , Metilação
18.
Mol Cell ; 47(1): 133-9, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22658723

RESUMO

Cells need to coordinate gene expression and metabolic state. Inosine monophosphate dehydrogenase (IMPDH) controls the guanine nucleotide pool and, thereby, cell proliferation. We found that Drosophila IMPDH is also a DNA-binding transcriptional repressor. IMPDH attenuates expression of histone genes and E2f, a key driver of cell proliferation. Nuclear IMPDH accumulates during the G2 phase of the cell cycle or following replicative or oxidative stress. Thus, IMPDH can couple the expression of histones and E2F to cellular state. Genome-wide profiling and in vitro binding assays established that IMPDH binds sequence specifically to single-stranded, CT-rich DNA elements. Surprisingly, this DNA-binding function is conserved in E. coli IMPDH. The catalytic function of IMPDH is not required for DNA binding. Yet substitutions that correspond to human retinitis pigmentosa mutations disrupt IMPDH binding to CT-rich, single-stranded DNA elements. By doubling as nucleotide biosynthetic enzyme or transcription factor, IMPDH can either enable or restrict cell proliferation.


Assuntos
Ciclo Celular/genética , Proteínas de Drosophila/genética , IMP Desidrogenase/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fase G2/genética , Perfilação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , IMP Desidrogenase/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Retinose Pigmentar/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
19.
Science ; 336(6082): 744-7, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22491092

RESUMO

Polycomb group (PcG) proteins control development and cell proliferation through chromatin-mediated transcriptional repression. We describe a transcription-independent function for PcG protein Posterior sex combs (PSC) in regulating the destruction of cyclin B (CYC-B). A substantial portion of PSC was found outside canonical PcG complexes, instead associated with CYC-B and the anaphase-promoting complex (APC). Cell-based experiments and reconstituted reactions established that PSC and Lemming (LMG, also called APC11) associate and ubiquitylate CYC-B cooperatively, marking it for proteosomal degradation. Thus, PSC appears to mediate both developmental gene silencing and posttranslational control of mitosis. Direct regulation of cell cycle progression might be a crucial part of the PcG system's function in development and cancer.


Assuntos
Pontos de Checagem do Ciclo Celular , Ciclina B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Mitose , Ciclossomo-Complexo Promotor de Anáfase , Animais , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Transporte/metabolismo , Linhagem Celular , Olho Composto de Artrópodes/crescimento & desenvolvimento , Olho Composto de Artrópodes/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Inativação Gênica , Discos Imaginais/metabolismo , Fenótipo , Complexo Repressor Polycomb 1 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transcrição Gênica , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação , Asas de Animais/crescimento & desenvolvimento
20.
Mol Cell Biol ; 32(3): 675-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22124157

RESUMO

The nucleosome is the fundamental repeating unit of eukaryotic chromatin. Here, we assessed the interplay between DNA sequence and ATP-dependent chromatin-remodeling factors (remodelers) in the nucleosomal organization of a eukaryotic genome. We compared the genome-wide distribution of Drosophila NURD, (P)BAP, INO80, and ISWI, representing the four major remodeler families. Each remodeler has a unique set of genomic targets and generates distinct chromatin signatures. Remodeler loci have characteristic DNA sequence features, predicted to influence nucleosome formation. Strikingly, remodelers counteract DNA sequence-driven nucleosome distribution in two distinct ways. NURD, (P)BAP, and INO80 increase histone density at their target sequences, which intrinsically disfavor positioned nucleosome formation. In contrast, ISWI promotes open chromatin at sites that are propitious for precise nucleosome placement. Remodelers influence nucleosome organization genome-wide, reflecting their high genomic density and the propagation of nucleosome redistribution beyond remodeler binding sites. In transcriptionally silent early embryos, nucleosome organization correlates with intrinsic histone-DNA sequence preferences. Following differential expression of the genome, however, this relationship diminishes and eventually disappears. We conclude that the cellular nucleosome landscape is the result of the balance between DNA sequence-driven nucleosome placement and active nucleosome repositioning by remodelers and the transcription machinery.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação/genética , DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma , Histonas/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA