Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1787, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741939

RESUMO

We draw a picture of physical systems that allows us to recognize what "time" is by requiring consistency with the way that time enters the fundamental laws of Physics. Elements of the picture are two non-interacting and yet entangled quantum systems, one of which acting as a clock. The setting is based on the Page and Wootters mechanism, with tools from large-N quantum approaches. Starting from an overall quantum description, we first take the classical limit of the clock only, and then of the clock and the evolving system altogether; we thus derive the Schrödinger equation in the first case, and the Hamilton equations of motion in the second. This work shows that there is not a "quantum time", possibly opposed to a "classical" one; there is only one time, and it is a manifestation of entanglement.

2.
Phys Rev Lett ; 122(7): 070603, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848614

RESUMO

Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling engine. We illustrate quantum measurement cooling (QMC) by means of a prototypical two-stroke two-qubit engine which interacts with a measurement apparatus and two heat reservoirs at different temperatures. We show that feedback control is not necessary for operation while entanglement must be present in the measurement projectors. We quantify the probability that QMC occurs when the measurement basis is chosen randomly, and find that it can be very large as compared to the probability of extracting energy (heat engine operation), while remaining always smaller than the most useless operation, namely, dumping heat in both baths. These results show that QMC can be very robust to experimental noise. A possible low-temperature solid-state implementation that integrates circuit QED technology with circuit quantum thermodynamics technology is presented.

3.
Proc Natl Acad Sci U S A ; 110(17): 6748-53, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23572581

RESUMO

The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field.


Assuntos
Modelos Químicos , Probabilidade , Teoria Quântica , Física
4.
Phys Rev Lett ; 106(14): 140501, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561174

RESUMO

We propose a new fast scalable method for achieving a two-qubit entangling gate between arbitrary distant qubits in a network by exploiting dispersionless propagation in uniform chains. This is achieved dynamically by switching on a strong interaction between the qubits and a bus formed by a nonengineered chain of interacting qubits. The quality of the gate scales very efficiently with qubit separations. Surprisingly, a sudden switching of the couplings is not necessary. Moreover, our gate mechanism works for multiple gate operations without resetting the bus. We propose a possible experimental realization in cold atoms trapped in optical lattices and near field Fresnel trapping potentials.

5.
Phys Rev Lett ; 94(14): 147208, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15904106

RESUMO

Making use of exact results and quantum Monte Carlo data for the entanglement of formation, we show that the ground state of anisotropic two-dimensional S=1/2 antiferromagnets in a uniform field takes the classical-like form of a product state for a particular value and orientation of the field, at which the purely quantum correlations due to entanglement disappear. Analytical expressions for the energy and the form of such states are given, and a novel type of exactly solvable two-dimensional quantum models is therefore singled out. Moreover, we show that the field-induced quantum phase transition present in the models is unambiguously characterized by a cusp minimum in the pairwise-to-global entanglement ratio R, marking the quantum-critical enhancement of multipartite entanglement.

6.
Phys Rev Lett ; 93(16): 167203, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15525026

RESUMO

We study the field dependence of the entanglement of formation in anisotropic S=1/2 antiferromagnetic chains displaying a T=0 field-driven quantum phase transition. The analysis is carried out via quantum Monte Carlo simulations. At zero temperature the entanglement estimators show abrupt changes at and around criticality, vanishing below the critical field, in correspondence with an exactly factorized state, and then immediately recovering a finite value upon passing through the quantum phase transition. At the quantum-critical point, a deep minimum in the pairwise-to-global entanglement ratio shows that multispin entanglement is strongly enhanced; moreover this signature represents a novel way of detecting the quantum phase transition of the system, relying entirely on entanglement estimators.

7.
Phys Rev Lett ; 90(16): 167205, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12732003

RESUMO

We consider the Heisenberg antiferromagnet on the square lattice with S=1/2 and very weak easy-plane exchange anisotropy; by means of the quantum Monte Carlo method, based on the continuous-time loop algorithm, we find that the thermodynamics of the model is highly sensitive to the presence of tiny anisotropies and is characterized by a crossover between isotropic and planar behavior. We discuss the mechanism underlying the crossover phenomenon and show that it occurs at a temperature which is characteristic of the model. The expected Berezinskii-Kosterlitz-Thouless transition is observed below the crossover: a finite range of temperatures consequently opens for experimental detection of noncritical 2D XY behavior. Direct comparison is made with uniform susceptibility data relative to the S=1/2 layered antiferromagnet Sr2CuO2Cl2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA